Results 1 - 10
of
299
Semi-Supervised Learning Literature Survey
, 2006
"... We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a chapter ..."
Abstract
-
Cited by 782 (8 self)
- Add to MetaCart
We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
Linear spatial pyramid matching using sparse coding for image classification
- in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract
-
Cited by 497 (21 self)
- Add to MetaCart
(Show Context)
Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably reduces the complexity of SVMs to O(n) in training and a constant in testing. In a number of image categorization experiments, we find that, in terms of classification accuracy, the suggested linear SPM based on sparse coding of SIFT descriptors always significantly outperforms the linear SPM kernel on histograms, and is even better than the nonlinear SPM kernels, leading to state-of-the-art performance on several benchmarks by using a single type of descriptors. 1.
A Survey on Transfer Learning
"... A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task i ..."
Abstract
-
Cited by 459 (24 self)
- Add to MetaCart
(Show Context)
A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as co-variate shift. We also explore some potential future issues in transfer learning research.
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
- IN ICML’09
, 2009
"... ..."
Online learning for matrix factorization and sparse coding
, 2010
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the large-scale matrix factorization problem that consists of learning the basis set in order to ad ..."
Abstract
-
Cited by 330 (31 self)
- Add to MetaCart
(Show Context)
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the large-scale matrix factorization problem that consists of learning the basis set in order to adapt it to specific data. Variations of this problem include dictionary learning in signal processing, non-negative matrix factorization and sparse principal component analysis. In this paper, we propose to address these tasks with a new online optimization algorithm, based on stochastic approximations, which scales up gracefully to large data sets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems. A proof of convergence is presented, along with experiments with natural images and genomic data demonstrating that it leads to state-of-the-art performance in terms of speed and optimization for both small and large data sets.
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
"... We evaluate whether features extracted from the activation of a deep convolutional network trained in a fully supervised fashion on a large, fixed set of object recognition tasks can be repurposed to novel generic tasks. Our generic tasks may differ significantly from the originally trained tasks an ..."
Abstract
-
Cited by 203 (22 self)
- Add to MetaCart
(Show Context)
We evaluate whether features extracted from the activation of a deep convolutional network trained in a fully supervised fashion on a large, fixed set of object recognition tasks can be repurposed to novel generic tasks. Our generic tasks may differ significantly from the originally trained tasks and there may be insufficient labeled or unlabeled data to conventionally train or adapt a deep architecture to the new tasks. We investigate and visualize the semantic clustering of deep convolutional features with respect to a variety of such tasks, including scene recognition, domain adaptation, and fine-grained recognition challenges. We compare the efficacy of relying on various network levels to define a fixed feature, and report novel results that significantly outperform the state-of-the-art on several important vision challenges. We are releasing DeCAF, an open-source implementation of these deep convolutional activation features, along with all associated network parameters to enable vision researchers to be able to conduct experimentation with deep representations across a range of visual concept learning paradigms. 1.
Building high-level features using large scale unsupervised learning
- In International Conference on Machine Learning, 2012. 103
"... We consider the problem of building highlevel, class-specific feature detectors from only unlabeled data. For example, is it possible to learn a face detector using only unlabeled images? To answer this, we train a 9-layered locally connected sparse autoencoder withpoolingandlocalcontrastnormalizati ..."
Abstract
-
Cited by 180 (9 self)
- Add to MetaCart
(Show Context)
We consider the problem of building highlevel, class-specific feature detectors from only unlabeled data. For example, is it possible to learn a face detector using only unlabeled images? To answer this, we train a 9-layered locally connected sparse autoencoder withpoolingandlocalcontrastnormalization on a large dataset of images (the model has 1 billion connections, the dataset has 10 million 200x200 pixel images downloaded from the Internet). We train this network using model parallelism and asynchronous SGD on a cluster with 1,000 machines (16,000 cores) for three days. Contrary to what appears to be a widely-held intuition, our experimental results reveal that it is possible to train a face detector without having to label images as containingafaceornot. Controlexperiments show that this feature detector is robust not only to translation but also to scaling and out-of-plane rotation. We also find that the same network is sensitive to other high-level concepts such as cat faces and human bodies. Starting with these learned features, we trained our network to obtain 15.8 % accuracy in recognizing 20,000 object categories from ImageNet, a leap of 70 % relative improvement over the previous state-of-the-art.
Representation learning: A review and new perspectives.
- of IEEE Conf. Comp. Vision Pattern Recog. (CVPR),
, 2005
"... Abstract-The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can b ..."
Abstract
-
Cited by 173 (4 self)
- Add to MetaCart
Abstract-The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, autoencoders, manifold learning, and deep networks. This motivates longer term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation, and manifold learning.
Sparse deep belief net model for visual area V2
- Advances in Neural Information Processing Systems 20
, 2008
"... Abstract 1 Motivated in part by the hierarchical organization of the neocortex, a number of recently proposed algorithms have tried to learn hierarchical, or “deep, ” structure from unlabeled data. While several authors have formally or informally compared their algorithms to computations performed ..."
Abstract
-
Cited by 164 (19 self)
- Add to MetaCart
(Show Context)
Abstract 1 Motivated in part by the hierarchical organization of the neocortex, a number of recently proposed algorithms have tried to learn hierarchical, or “deep, ” structure from unlabeled data. While several authors have formally or informally compared their algorithms to computations performed in visual area V1 (and the cochlea), little attempt has been made thus far to evaluate these algorithms in terms of their fidelity for mimicking computations at deeper levels in the cortical hierarchy. This thesis describes an unsupervised learning model that faithfully mimics certain properties of visual area V2. Specifically, we develop a sparse variant of the deep belief networks described by Hinton et al. (2006). We learn two layers of representation in the network, and demonstrate that the first layer, similar to prior work on sparse coding and ICA, results in localized, oriented, edge filters, similar to the gabor functions known to model simple cell receptive fields in area V1. Further, the second layer in our model encodes various combinations of the first layer responses in the data. Specifically, it picks up both collinear (“contour”) features as well as corners and junctions. More interestingly, in a quantitative comparison, the encoding of these more complex “corner ” features matches well with the results from Ito & Komatsu’s study of neural responses to angular stimuli in area V2 of the macaque. This suggests that our sparse variant of deep belief networks holds promise for modeling more higher-order features that are encoded in visual cortex. Conversely, one may also interpret the results reported here as suggestive that visual area V2 is performing computations on its input similar to those performed in (sparse) deep belief networks. This plausible relationship generates some intriguing hypotheses about V2 computations. 1 This thesis is an extended version of an earlier paper by Honglak Lee, Chaitanya Ekanadham, and Andrew Ng titled “Sparse deep belief net model for visual area V2.” 1