• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

Foundations of Inductive Logic Programming (1995)

by S Muggleton
Add To MetaCart

Tools

Sorted by:
Results 1 - 10 of 1,194
Next 10 →

Fast Algorithms for Mining Association Rules

by Rakesh Agrawal, Ramakrishnan Srikant , 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract - Cited by 3612 (15 self) - Add to MetaCart
We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known algorithms by factors ranging from three for small problems to more than an order of magnitude for large problems. We also show how the best features of the two proposed algorithms can be combined into a hybrid algorithm, called AprioriHybrid. Scale-up experiments show that AprioriHybrid scales linearly with the number of transactions. AprioriHybrid also has excellent scale-up properties with respect to the transaction size and the number of items in the database.

Markov Logic Networks

by Matthew Richardson, Pedro Domingos - MACHINE LEARNING , 2006
"... We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the ..."
Abstract - Cited by 816 (39 self) - Add to MetaCart
We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a first-order formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach.
(Show Context)

Citation Context

...binary clique between each predictor and the response. Noisy OR can similarly be represented with a linear number of parents. 9.3. OTHER LOGIC PROGRAMMING APPROACHES Stochastic logic programs (SLPs) (=-=Muggleton, 1996-=-; Cussens, 1999) are a combination of logic programming and log-linear models. Puech and Muggleton (2003) showed that SLPs are a special case of KBMC, and thus they can be converted into MLNs in the s...

Inverse entailment and Progol

by Stephen Muggleton , 1995
"... This paper firstly provides a re-appraisal of the development of techniques for inverting deduction, secondly introduces Mode-Directed Inverse Entailment (MDIE) as a generalisation and enhancement of previous approaches and thirdly describes an implementation of MDIE in the Progol system. Progol ..."
Abstract - Cited by 719 (61 self) - Add to MetaCart
This paper firstly provides a re-appraisal of the development of techniques for inverting deduction, secondly introduces Mode-Directed Inverse Entailment (MDIE) as a generalisation and enhancement of previous approaches and thirdly describes an implementation of MDIE in the Progol system. Progol is implemented in C and available by anonymous ftp. The re-assessment of previous techniques in terms of inverse entailment leads to new results for learning from positive data and inverting implication between pairs of clauses.

Enhanced hypertext categorization using hyperlinks

by Soumen Chakrabarti, Byron Dom, Piotr Indyk , 1998
"... A major challenge in indexing unstructured hypertext databases is to automatically extract meta-data that enables structured search using topic taxonomies, circumvents keyword ambiguity, and improves the quality of search and profile-based routing and filtering. Therefore, an accurate classifier is ..."
Abstract - Cited by 453 (8 self) - Add to MetaCart
A major challenge in indexing unstructured hypertext databases is to automatically extract meta-data that enables structured search using topic taxonomies, circumvents keyword ambiguity, and improves the quality of search and profile-based routing and filtering. Therefore, an accurate classifier is an essential component of a hypertext database. Hyperlinks pose new problems not addressed in the extensive text classification literature. Links clearly contain high-quality semantic clues that are lost upon a purely term-based classifier, but exploiting link information is non-trivial because it is noisy. Naive use of terms in the link neighborhood of a document can even degrade accuracy. Our contribution is to propose robust statistical models and a relaxation labeling technique for better classification by exploiting link information in a small neighborhood around documents. Our technique also adapts gracefully to the fraction of neighboring documents having known topics. We experimented with pre-classified samples from Yahoo! ’ and the US Patent Database2. In previous work, we developed a text classifier that misclassified only 13 % of the documents in the well-known Reuters benchmark; this was comparable to the best results ever obtained. This classifier misclassified 36 % of the patents, indicating that classifying hypertext can be more difficult than classifying text. Naively using terms in neighboring documents increased error to 38%; our hypertext classifier reduced it to 21%. Results with the Yahoo! sample were more dramatic: the text classifier showed 68% error, whereas our hypertext classifier reduced this to only 21%.

Discovery of frequent episodes in event sequences

by Heikki Mannila, Hannu Toivonen - Data Min. Knowl. Discov , 1997
"... Abstract. Sequences of events describing the behavior and actions of users or systems can be collected in several domains. An episode is a collection of events that occur relatively close to each other in a given partial order. We consider the problem of discovering frequently occurring episodes in ..."
Abstract - Cited by 362 (13 self) - Add to MetaCart
Abstract. Sequences of events describing the behavior and actions of users or systems can be collected in several domains. An episode is a collection of events that occur relatively close to each other in a given partial order. We consider the problem of discovering frequently occurring episodes in a sequence. Once such episodes are known, one can produce rules for describing or predicting the behavior of the sequence. We give efficient algorithms for the discovery of all frequent episodes from a given class of episodes, and present detailed experimental results. The methods are in use in telecommunication alarm management. Keywords: event sequences, frequent episodes, sequence analysis 1.
(Show Context)

Citation Context

...covery tasks is. There are also some interesting similarities between the286 MANNILA, TOIVONEN AND VERKAMO discovery of frequent episodes and the work done on inductive logic programming (see, e.g., =-=Muggleton, 1992-=-); a noticeable difference is caused by the sequentiality of the underlying data model, and the emphasis on time-limited occurrences. Similarly, the problem of looking for one occurrence of an episode...

FOIL: A Midterm Report

by J. R. Quinlan, R. M. Cameron-jones - In Proceedings of the European Conference on Machine Learning , 1993
"... : FOIL is a learning system that constructs Horn clause programs from examples. This paper summarises the development of FOIL from 1989 up to early 1993 and evaluates its effectiveness on a non-trivial sequence of learning tasks taken from a Prolog programming text. Although many of these tasks ..."
Abstract - Cited by 257 (3 self) - Add to MetaCart
: FOIL is a learning system that constructs Horn clause programs from examples. This paper summarises the development of FOIL from 1989 up to early 1993 and evaluates its effectiveness on a non-trivial sequence of learning tasks taken from a Prolog programming text. Although many of these tasks are handled reasonably well, the experiment highlights some weaknesses of the current implementation. Areas for further research are identified. 1. Introduction The principal differences between zeroth-order and first-order supervised learning systems are the form of the training data and the way that a learned theory is expressed. Data for zeroth-order learning programs such as ASSISTANT [Cestnik, Kononenko and Bratko, 1986], CART [Breiman, Friedman, Olshen and Stone, 1984], CN2 [Clark and Niblett, 1987] and C4.5 [Quinlan, 1992] comprise preclassified cases, each described by its values for a fixed collection of attributes. These systems develop theories, in the form of decision trees o...

Clausal Discovery

by Luc De Raedt, Luc Dehaspe , 1997
"... The clausal discovery engine Claudien is presented. Claudien is an inductive logic programming engine that fits in the descriptive data mining paradigm. Claudien addresses characteristic induction from interpretations, a task which is related to existing formalisations of induction in logic. In ch ..."
Abstract - Cited by 199 (34 self) - Add to MetaCart
The clausal discovery engine Claudien is presented. Claudien is an inductive logic programming engine that fits in the descriptive data mining paradigm. Claudien addresses characteristic induction from interpretations, a task which is related to existing formalisations of induction in logic. In characteristic induction from interpretations, the regularities are represented by clausal theories, and the data using Herbrand interpretations. Because Claudien uses clausal logic to represent hypotheses, the regularities induced typically involve multiple relations or predicates. Claudien also employs a novel declarative bias mechanism to define the set of clauses that may appear in a hypothesis.

Knowledge-Based Artificial Neural Networks

by Geoffrey G. Towell, Jude W. Shavlik , 1994
"... Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for accurately classifying examples not seen during training. The challenge of hybrid learning systems is to use the information provided by one source of information to offset informat ..."
Abstract - Cited by 185 (13 self) - Add to MetaCart
Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for accurately classifying examples not seen during training. The challenge of hybrid learning systems is to use the information provided by one source of information to offset information missing from the other source. By so doing, a hybrid learning system should learn more effectively than systems that use only one of the information sources. KBANN(Knowledge-Based Artificial Neural Networks) is a hybrid learning system built on top of connectionist learning techniques. It maps problem-specific "domain theories", represented in propositional logic, into neural networks and then refines this reformulated knowledge using backpropagation. KBANN is evaluated by extensive empirical tests on two problems from molecular biology. Among other results, these tests show that the networks created by KBANN generalize better than a wide variety of learning systems, as well as several t...

Separate-and-conquer rule learning

by Johannes Fürnkranz - Artificial Intelligence Review , 1999
"... This paper is a survey of inductive rule learning algorithms that use a separate-and-conquer strategy. This strategy can be traced back to the AQ learning system and still enjoys popularity as can be seen from its frequent use in inductive logic programming systems. We will put this wide variety of ..."
Abstract - Cited by 168 (29 self) - Add to MetaCart
This paper is a survey of inductive rule learning algorithms that use a separate-and-conquer strategy. This strategy can be traced back to the AQ learning system and still enjoys popularity as can be seen from its frequent use in inductive logic programming systems. We will put this wide variety of algorithms into a single framework and analyze them along three different dimensions, namely their search, language and overfitting avoidance biases.
(Show Context)

Citation Context

... lists) for multi-class problems. Problems with continuous class variables can be solved by learning regression rules. Research in the field of inductive logic programming (Bergadano & Gunetti, 1995; =-=Muggleton, 1992-=-; De Raedt, 1995) has developed a variety of separate-and-conquer algorithms that can solve the above tasks in a richer representation language by inducing logic programs for classification or for pre...

Theories for Mutagenicity: A Study in First-Order and Feature-Based Induction

by Ashwin Srinivasan Muggleton, Ashwin Srinivasan, S. H. Muggleton, M. J. E. Sternberg, R. D. King - Artificial Intelligence , 1996
"... A classic problem from chemistry is used to test a conjecture that in domains for which data are most naturally represented by graphs, theories constructed with Inductive Logic Programming (ILP) will significantly outperform those using simpler feature-based methods. One area that has long been asso ..."
Abstract - Cited by 159 (30 self) - Add to MetaCart
A classic problem from chemistry is used to test a conjecture that in domains for which data are most naturally represented by graphs, theories constructed with Inductive Logic Programming (ILP) will significantly outperform those using simpler feature-based methods. One area that has long been associated with graph-based or structural representation and reasoning is organic chemistry. In this field, we consider the problem of predicting the mutagenic activity of small molecules: a property that is related to carcinogenicity, and an important consideration in developing less hazardous drugs. By providing an ILP system with progressively more structural information concerning the molecules, we compare the predictive power of the logical theories constructed against benchmarks set by regression, neural, and tree-based methods. 1 Introduction Constructing theories to explain observations occupies much of the creative hours of scientists and engineers. Programs from the field of Inductiv...
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University