Results 1 - 10
of
1,782
A Simple Transmit Diversity Technique for Wireless Communications
, 1998
"... This paper presents a simple two-branch transmit diversity scheme. Using two transmit antennas and one receive antenna the scheme provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas. It is also shown that the scheme may ea ..."
Abstract
-
Cited by 2127 (0 self)
- Add to MetaCart
(Show Context)
This paper presents a simple two-branch transmit diversity scheme. Using two transmit antennas and one receive antenna the scheme provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas. It is also shown that the scheme may easily be generalized to two transmit antennas and w receive antennas to provide a diversity order of 2w. The new scheme does not require any bandwidth expansion any feedback from the receiver to the transmitter and its computation complexity is similar to MRRC.
Space-time block codes from orthogonal designs
- IEEE Trans. Inform. Theory
, 1999
"... Abstract — We introduce space–time block coding, a new paradigm for communication over Rayleigh fading channels using multiple transmit antennas. Data is encoded using a space–time block code and the encoded data is split into � streams which are simultaneously transmitted using � transmit antennas. ..."
Abstract
-
Cited by 1524 (42 self)
- Add to MetaCart
(Show Context)
Abstract — We introduce space–time block coding, a new paradigm for communication over Rayleigh fading channels using multiple transmit antennas. Data is encoded using a space–time block code and the encoded data is split into � streams which are simultaneously transmitted using � transmit antennas. The received signal at each receive antenna is a linear superposition of the � transmitted signals perturbed by noise. Maximumlikelihood decoding is achieved in a simple way through decoupling of the signals transmitted from different antennas rather than joint detection. This uses the orthogonal structure of the space–time block code and gives a maximum-likelihood decoding algorithm which is based only on linear processing at the receiver. Space–time block codes are designed to achieve the maximum diversity order for a given number of transmit and receive antennas subject to the constraint of having a simple decoding algorithm. The classical mathematical framework of orthogonal designs is applied to construct space–time block codes. It is shown that space–time block codes constructed in this way only exist for few sporadic values of �. Subsequently, a generalization of orthogonal designs is shown to provide space–time block codes for both real and complex constellations for any number of transmit antennas. These codes achieve the maximum possible transmission rate for any number of transmit antennas using any arbitrary real constellation such as PAM. For an arbitrary complex constellation such as PSK and QAM, space–time block codes are designed that achieve IaP of the maximum possible transmission rate for any number of transmit antennas. For the specific cases of two, three, and four transmit antennas, space–time block codes are designed that achieve, respectively, all, QaR, and QaR of maximum possible transmission rate using arbitrary complex constellations. The best tradeoff between the decoding delay and the number of transmit antennas is also computed and it is shown that many of the codes presented here are optimal in this sense as well. Index Terms — Codes, diversity, multipath channels, multiple antennas, wireless communication.
Diversity and Multiplexing: A Fundamental Tradeoff in Multiple Antenna Channels
- IEEE Trans. Inform. Theory
, 2002
"... Multiple antennas can be used for increasing the amount of diversity or the number of degrees of freedom in wireless communication systems. In this paper, we propose the point of view that both types of gains can be simultaneously obtained for a given multiple antenna channel, but there is a fund ..."
Abstract
-
Cited by 1165 (20 self)
- Add to MetaCart
(Show Context)
Multiple antennas can be used for increasing the amount of diversity or the number of degrees of freedom in wireless communication systems. In this paper, we propose the point of view that both types of gains can be simultaneously obtained for a given multiple antenna channel, but there is a fundamental tradeo# between how much of each any coding scheme can get. For the richly scattered Rayleigh fading channel, we give a simple characterization of the optimal tradeo# curve and use it to evaluate the performance of existing multiple antenna schemes.
Opportunistic Beamforming Using Dumb Antennas
- IEEE Transactions on Information Theory
, 2002
"... Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent time-varying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous cha ..."
Abstract
-
Cited by 811 (1 self)
- Add to MetaCart
(Show Context)
Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent time-varying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous channel quality is near the peak. The diversity gain increases with the dynamic range of the fluctuations and is thus limited in environments with little scattering and/or slow fading. In such environments, we propose the use of multiple transmit antennas to induce large and fast channel fluctuations so that multiuser diversity can still be exploited. The scheme can be interpreted as opportunistic beamforming and we show that true beamforming gains can be achieved when there are sufficient users, even though very limited channel feedback is needed. Furthermore, in a cellular system, the scheme plays an additional role of opportunistic nulling of the interference created on users of adjacent cells. We discuss the design implications of implementing this scheme in a complete wireless system.
User Cooperation Diversity -- Part I: System Description
- IEEE TRANS. COMMUN
, 1998
"... Mobile users' data rate and quality of service are limited by the fact that, within the duration of any given call, they experience severe variations in signal attenuation, thereby necessitating the use of some type of diversity. In this two-part paper, we propose a new form of spatial diver ..."
Abstract
-
Cited by 669 (22 self)
- Add to MetaCart
Mobile users' data rate and quality of service are limited by the fact that, within the duration of any given call, they experience severe variations in signal attenuation, thereby necessitating the use of some type of diversity. In this two-part paper, we propose a new form of spatial diversity, in which diversity gains are achieved via the cooperation of mobile users. Part I describes the user cooperation strategy while Part II focuses on implementation issues and performance analysis. Results show that, even though the inter-user channel is noisy, cooperation leads not only to an increase in capacity for both users but also to a more robust system, where users' achievable rates are less susceptible to channel variations.
Fading relay channels: Performance limits and space-time signal design
- IEEE J. SELECT. AREAS COMMUN
, 2004
"... Cooperative diversity is a transmission technique where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay ch ..."
Abstract
-
Cited by 445 (4 self)
- Add to MetaCart
(Show Context)
Cooperative diversity is a transmission technique where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay channel where the source, destination and relay terminals are each equipped with single antenna transceivers. We consider three different TDMA-based cooperative protocols that vary the degree of broadcasting and receive collision. The relay terminal operates in either the amplify-and-forward (AF) or decode-and-forward (DF) modes. For each protocol, we study the ergodic and outage capacity behavior (assuming Gaussian code books) under the AF and DF modes of relaying. We analyze the spatial diversity performance of the various protocols and find that full spatial diversity (second-order in this case) is achieved by certain protocols provided that appropriate power control is employed. Our analysis unifies previous results reported in the literature and establishes the superiority (both from a capacity as well as a diversity point-of-view) of a new protocol proposed in this paper. The second part of the paper is devoted to (distributed) space-time code design for fading relay channels operating in the AF mode. We show that the corresponding code design criteria consist of the traditional rank and determinant criteria for the case of co-located antennas as well as appropriate power control rules. Consequently space-time codes designed for the case of co-located multi-antenna channels can be used to realize cooperative diversity provided that appropriate power control is employed.
Fading Channels: Information-Theoretic And Communications Aspects
- IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information ..."
Abstract
-
Cited by 426 (3 self)
- Add to MetaCart
(Show Context)
In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information theory of fading channels, by emphasizing capacity as the most important performance measure. Both single-user and multiuser transmission are examined. Further, we describe how the structure of fading channels impacts code design, and finally overview equalization of fading multipath channels.
High-Rate Codes that are Linear in Space and Time
- IEEE Trans. Inform. Theory
, 2000
"... Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, V-BLAST, where every antenna transmits its own independent substream of data, has been shown to have good ..."
Abstract
-
Cited by 422 (13 self)
- Add to MetaCart
(Show Context)
Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, V-BLAST, where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet V-BLAST suffers from its inability to work with fewer receive antennas than transmit antennas---this deficiency is especially important for modern cellular systems where a basestation typically has more antennas than the mobile handsets. Furthermore, because V-BLAST transmits independent data streams on its antennas there is no built-in spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previously-proposed space-time codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a high-rate coding scheme that can handle any...
Achieving near-capacity on a multiple-antenna channel
- IEEE Trans. Commun
, 2003
"... Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve near-capacity on a single-antenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve nea ..."
Abstract
-
Cited by 402 (2 self)
- Add to MetaCart
(Show Context)
Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve near-capacity on a single-antenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve near-capacity on a multiple-antenna system where the receiver knows the channel. Combining iterative processing with multiple-antenna channels is particularly challenging because the channel capacities can be a factor of ten or more higher than their single-antenna counterparts. Using a “list ” version of the sphere decoder, we provide a simple method to iteratively detect and decode any linear space-time mapping combined with any channel code that can be decoded using so-called “soft ” inputs and outputs. We exemplify our technique by directly transmitting symbols that are coded with a channel code; we show that iterative processing with even this simple scheme can achieve near-capacity. We consider both simple convolutional and powerful turbo channel codes and show that excellent performance at very high data rates can be attained with either. We compare our simulation results with Shannon capacity limits for ergodic multiple-antenna channel. Index Terms—Wireless communications, BLAST, turbo codes, transmit diversity, receive diversity, fading channels, sphere decoding, soft-in/soft-out, concatenated codes 1