Results 1 - 10
of
1,525
Diversity and Multiplexing: A Fundamental Tradeoff in Multiple Antenna Channels
- IEEE Trans. Inform. Theory
, 2002
"... Multiple antennas can be used for increasing the amount of diversity or the number of degrees of freedom in wireless communication systems. In this paper, we propose the point of view that both types of gains can be simultaneously obtained for a given multiple antenna channel, but there is a fund ..."
Abstract
-
Cited by 1165 (20 self)
- Add to MetaCart
(Show Context)
Multiple antennas can be used for increasing the amount of diversity or the number of degrees of freedom in wireless communication systems. In this paper, we propose the point of view that both types of gains can be simultaneously obtained for a given multiple antenna channel, but there is a fundamental tradeo# between how much of each any coding scheme can get. For the richly scattered Rayleigh fading channel, we give a simple characterization of the optimal tradeo# curve and use it to evaluate the performance of existing multiple antenna schemes.
Opportunistic Beamforming Using Dumb Antennas
- IEEE Transactions on Information Theory
, 2002
"... Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent time-varying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous cha ..."
Abstract
-
Cited by 811 (1 self)
- Add to MetaCart
(Show Context)
Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent time-varying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous channel quality is near the peak. The diversity gain increases with the dynamic range of the fluctuations and is thus limited in environments with little scattering and/or slow fading. In such environments, we propose the use of multiple transmit antennas to induce large and fast channel fluctuations so that multiuser diversity can still be exploited. The scheme can be interpreted as opportunistic beamforming and we show that true beamforming gains can be achieved when there are sufficient users, even though very limited channel feedback is needed. Furthermore, in a cellular system, the scheme plays an additional role of opportunistic nulling of the interference created on users of adjacent cells. We discuss the design implications of implementing this scheme in a complete wireless system.
Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks
- IEEE TRANS. INF. THEORY
, 2003
"... We develop and analyze space–time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network. The protocols exploit spatial diversity available among a collection of distributed terminals that relay messages for one another in such a m ..."
Abstract
-
Cited by 622 (5 self)
- Add to MetaCart
(Show Context)
We develop and analyze space–time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network. The protocols exploit spatial diversity available among a collection of distributed terminals that relay messages for one another in such a manner that the destination terminal can average the fading, even though it is unknown a priori which terminals will be involved. In particular, a source initiates transmission to its destination, and many relays potentially receive the transmission. Those terminals that can fully decode the transmission utilize a space-time code to cooperatively relay to the destination. We demonstrate that these protocols achieve full spatial diversity in the number of cooperating terminals, not just the number of decoding relays, and can be used effectively for higher spectral efficiencies than repetition-based schemes. We discuss issues related to space–time code design for these protocols, emphasizing codes that readily allow for appealing distributed versions.
Fading relay channels: Performance limits and space-time signal design
- IEEE J. SELECT. AREAS COMMUN
, 2004
"... Cooperative diversity is a transmission technique where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay ch ..."
Abstract
-
Cited by 445 (4 self)
- Add to MetaCart
(Show Context)
Cooperative diversity is a transmission technique where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay channel where the source, destination and relay terminals are each equipped with single antenna transceivers. We consider three different TDMA-based cooperative protocols that vary the degree of broadcasting and receive collision. The relay terminal operates in either the amplify-and-forward (AF) or decode-and-forward (DF) modes. For each protocol, we study the ergodic and outage capacity behavior (assuming Gaussian code books) under the AF and DF modes of relaying. We analyze the spatial diversity performance of the various protocols and find that full spatial diversity (second-order in this case) is achieved by certain protocols provided that appropriate power control is employed. Our analysis unifies previous results reported in the literature and establishes the superiority (both from a capacity as well as a diversity point-of-view) of a new protocol proposed in this paper. The second part of the paper is devoted to (distributed) space-time code design for fading relay channels operating in the AF mode. We show that the corresponding code design criteria consist of the traditional rank and determinant criteria for the case of co-located antennas as well as appropriate power control rules. Consequently space-time codes designed for the case of co-located multi-antenna channels can be used to realize cooperative diversity provided that appropriate power control is employed.
High-Rate Codes that are Linear in Space and Time
- IEEE Trans. Inform. Theory
, 2000
"... Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, V-BLAST, where every antenna transmits its own independent substream of data, has been shown to have good ..."
Abstract
-
Cited by 422 (13 self)
- Add to MetaCart
(Show Context)
Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, V-BLAST, where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet V-BLAST suffers from its inability to work with fewer receive antennas than transmit antennas---this deficiency is especially important for modern cellular systems where a basestation typically has more antennas than the mobile handsets. Furthermore, because V-BLAST transmits independent data streams on its antennas there is no built-in spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previously-proposed space-time codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a high-rate coding scheme that can handle any...
Achieving near-capacity on a multiple-antenna channel
- IEEE Trans. Commun
, 2003
"... Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve near-capacity on a single-antenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve nea ..."
Abstract
-
Cited by 402 (2 self)
- Add to MetaCart
(Show Context)
Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve near-capacity on a single-antenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve near-capacity on a multiple-antenna system where the receiver knows the channel. Combining iterative processing with multiple-antenna channels is particularly challenging because the channel capacities can be a factor of ten or more higher than their single-antenna counterparts. Using a “list ” version of the sphere decoder, we provide a simple method to iteratively detect and decode any linear space-time mapping combined with any channel code that can be decoded using so-called “soft ” inputs and outputs. We exemplify our technique by directly transmitting symbols that are coded with a channel code; we show that iterative processing with even this simple scheme can achieve near-capacity. We consider both simple convolutional and powerful turbo channel codes and show that excellent performance at very high data rates can be attained with either. We compare our simulation results with Shannon capacity limits for ergodic multiple-antenna channel. Index Terms—Wireless communications, BLAST, turbo codes, transmit diversity, receive diversity, fading channels, sphere decoding, soft-in/soft-out, concatenated codes 1
From theory to practice: an overview of MIMO space-time coded wireless systems
- IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 2003
"... This paper presents an overview of recent progress in the area of multiple-input–multiple-output (MIMO) space–time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of technique ..."
Abstract
-
Cited by 371 (6 self)
- Add to MetaCart
(Show Context)
This paper presents an overview of recent progress in the area of multiple-input–multiple-output (MIMO) space–time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of techniques and algorithms proposed which attempt to realize the various benefits of MIMO including spatial multiplexing and space–time coding schemes. These algorithms are often derived and analyzed under ideal independent fading conditions. We present the state of the art in channel modeling and measurements, leading to a better understanding of actual MIMO gains. Finally, the paper addresses current questions regarding the integration of MIMO links in practical wireless systems and standards.
Grassmannian beamforming for multiple-input multiple-output wireless systems
- IEEE TRANS. INFORM. THEORY
, 2003
"... Transmit beamforming and receive combining are simple methods for exploiting the significant diversity that is available in multiple-input and multiple-output (MIMO) wireless systems. Unfortunately, optimal performance requires either complete channel knowledge or knowledge of the optimal beamformi ..."
Abstract
-
Cited by 329 (38 self)
- Add to MetaCart
Transmit beamforming and receive combining are simple methods for exploiting the significant diversity that is available in multiple-input and multiple-output (MIMO) wireless systems. Unfortunately, optimal performance requires either complete channel knowledge or knowledge of the optimal beamforming vector which are not always realizable in practice. In this correspondence, a quantized maximum signal-to-noise ratio (SNR) beamforming technique is proposed where the receiver only sends the label of the best beamforming vector in a predetermined codebook to the transmitter. By using the distribution of the optimal beamforming vector in independent identically distributed Rayleigh fading matrix channels, the codebook design problem is solved and related to the problem of Grassmannian line packing. The proposed design criterion is flexible enough to allow for side constraints on the codebook vectors. Bounds on the codebook size are derived to guarantee full diversity order. Results on the density of Grassmannian line packings are derived and used to develop bounds on the codebook size given a capacity or SNR loss. Monte Carlo simulations are presented that compare the probability of error for different quantization strategies.
A Quasi-orthogonal Space–time Block Code
, 2001
"... It has been shown that a complex orthogonal design that provides full diversity and full transmission rate for a space–time block code is not possible for more than two antennas. Previous attempts have been concentrated in generalizing orthogonal designs which provide space–time block codes with ful ..."
Abstract
-
Cited by 301 (12 self)
- Add to MetaCart
It has been shown that a complex orthogonal design that provides full diversity and full transmission rate for a space–time block code is not possible for more than two antennas. Previous attempts have been concentrated in generalizing orthogonal designs which provide space–time block codes with full diversity and a high transmission rate. In this work, we design rate one codes which are quasi-orthogonal and provide partial diversity. The decoder of the proposed codes works with pairs of transmitted symbols instead of single symbols.