Results 1  10
of
216
FINDING STRUCTURE WITH RANDOMNESS: PROBABILISTIC ALGORITHMS FOR CONSTRUCTING APPROXIMATE MATRIX DECOMPOSITIONS
"... Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for ..."
Abstract

Cited by 253 (6 self)
 Add to MetaCart
(Show Context)
Lowrank matrix approximations, such as the truncated singular value decomposition and the rankrevealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing lowrank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired lowrank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition
Algorithms and applications for approximate nonnegative matrix factorization
 Computational Statistics and Data Analysis
, 2006
"... In this paper we discuss the development and use of lowrank approximate nonnegative matrix factorization (NMF) algorithms for feature extraction and identification in the fields of text mining and spectral data analysis. The evolution and convergence properties of hybrid methods based on both spars ..."
Abstract

Cited by 204 (8 self)
 Add to MetaCart
(Show Context)
In this paper we discuss the development and use of lowrank approximate nonnegative matrix factorization (NMF) algorithms for feature extraction and identification in the fields of text mining and spectral data analysis. The evolution and convergence properties of hybrid methods based on both sparsity and smoothness constraints for the resulting nonnegative matrix factors are discussed. The interpretability of NMF outputs in specific contexts are provided along with opportunities for future work in the modification of NMF algorithms for largescale and timevarying datasets. Key words: nonnegative matrix factorization, text mining, spectral data analysis, email surveillance, conjugate gradient, constrained least squares.
On the Nyström Method for Approximating a Gram Matrix for Improved KernelBased Learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... A problem for many kernelbased methods is that the amount of computation required to find the solution scales as O(n³), where n is the number of training examples. We develop and analyze an algorithm to compute an easilyinterpretable lowrank approximation to an nn Gram matrix G such that compu ..."
Abstract

Cited by 188 (11 self)
 Add to MetaCart
A problem for many kernelbased methods is that the amount of computation required to find the solution scales as O(n³), where n is the number of training examples. We develop and analyze an algorithm to compute an easilyinterpretable lowrank approximation to an nn Gram matrix G such that computations of interest may be performed more rapidly. The approximation is of the form G k = CW , where C is a matrix consisting of a small number c of columns of G and W k is the best rankk approximation to W , the matrix formed by the intersection between those c columns of G and the corresponding c rows of G. An important aspect of the algorithm is the probability distribution used to randomly sample the columns; we will use a judiciouslychosen and datadependent nonuniform probability distribution. Let F denote the spectral norm and the Frobenius norm, respectively, of a matrix, and let G k be the best rankk approximation to G. We prove that by choosing O(k/# ) columns both in expectation and with high probability, for both # = 2, F , and for all k : 0 rank(W ). This approximation can be computed using O(n) additional space and time, after making two passes over the data from external storage. The relationships between this algorithm, other related matrix decompositions, and the Nyström method from integral equation theory are discussed.
An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
, 2009
"... ..."
(Show Context)
Improved approximation algorithms for large matrices via random projections.
 In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
, 2006
"... ..."
(Show Context)
Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication
 SIAM Journal on Computing
, 2004
"... ..."
(Show Context)
Protovalue functions: A laplacian framework for learning representation and control in markov decision processes
 Journal of Machine Learning Research
, 2006
"... This paper introduces a novel spectral framework for solving Markov decision processes (MDPs) by jointly learning representations and optimal policies. The major components of the framework described in this paper include: (i) A general scheme for constructing representations or basis functions by d ..."
Abstract

Cited by 92 (10 self)
 Add to MetaCart
(Show Context)
This paper introduces a novel spectral framework for solving Markov decision processes (MDPs) by jointly learning representations and optimal policies. The major components of the framework described in this paper include: (i) A general scheme for constructing representations or basis functions by diagonalizing symmetric diffusion operators (ii) A specific instantiation of this approach where global basis functions called protovalue functions (PVFs) are formed using the eigenvectors of the graph Laplacian on an undirected graph formed from state transitions induced by the MDP (iii) A threephased procedure called representation policy iteration comprising of a sample collection phase, a representation learning phase that constructs basis functions from samples, and a final parameter estimation phase that determines an (approximately) optimal policy within the (linear) subspace spanned by the (current) basis functions. (iv) A specific instantiation of the RPI framework using leastsquares policy iteration (LSPI) as the parameter estimation method (v) Several strategies for scaling the proposed approach to large discrete and continuous state spaces, including the Nyström extension for outofsample interpolation of eigenfunctions, and the use of Kronecker sum factorization to construct compact eigenfunctions in product spaces such as factored MDPs (vi) Finally, a series of illustrative discrete and continuous control tasks, which both illustrate the concepts and provide a benchmark for evaluating the proposed approach. Many challenges remain to be addressed in scaling the proposed framework to large MDPs, and several elaboration of the proposed framework are briefly summarized at the end.
Matrix Approximation and Projective Clustering via Volume Sampling
, 2006
"... Frieze, Kannan, and Vempala (JACM 2004) proved that a small sample of rows of a given matrix A spans the rows of a lowrank approximation D that minimizes A−DF within a small additive error, and the sampling can be done efficiently using just two passes over the matrix. In this paper, we genera ..."
Abstract

Cited by 90 (3 self)
 Add to MetaCart
Frieze, Kannan, and Vempala (JACM 2004) proved that a small sample of rows of a given matrix A spans the rows of a lowrank approximation D that minimizes A−DF within a small additive error, and the sampling can be done efficiently using just two passes over the matrix. In this paper, we generalize this result in two ways. First, we prove that the additive error drops exponentially by iterating the sampling in an adaptive manner (adaptive sampling). Using this result, we give a passefficient algorithm for computing a lowrank approximation with reduced additive error. Our second result is that there exist k rows of A whose span contains the rows of a multiplicative (k + 1)approximation to the best rankk matrix; moreover, this subset can be found by sampling ksubsets of rows from a natural distribution (volume sampling). Combining volume sampling with adaptive sampling yields the existence of a set of k + k(k + 1)/ε rows whose span contains the rows of a multiplicative (1 + ε)approximation. This leads to a PTAS for the following NPhard
RELATIVEERROR CUR MATRIX DECOMPOSITIONS
 SIAM J. MATRIX ANAL. APPL
, 2008
"... Many data analysis applications deal with large matrices and involve approximating the matrix using a small number of “components.” Typically, these components are linear combinations of the rows and columns of the matrix, and are thus difficult to interpret in terms of the original features of the ..."
Abstract

Cited by 86 (17 self)
 Add to MetaCart
Many data analysis applications deal with large matrices and involve approximating the matrix using a small number of “components.” Typically, these components are linear combinations of the rows and columns of the matrix, and are thus difficult to interpret in terms of the original features of the input data. In this paper, we propose and study matrix approximations that are explicitly expressed in terms of a small number of columns and/or rows of the data matrix, and thereby more amenable to interpretation in terms of the original data. Our main algorithmic results are two randomized algorithms which take as input an m × n matrix A and a rank parameter k. In our first algorithm, C is chosen, and we let A ′ = CC + A, where C + is the Moore–Penrose generalized inverse of C. In our second algorithm C, U, R are chosen, and we let A ′ = CUR. (C and R are matrices that consist of actual columns and rows, respectively, of A, and U is a generalized inverse of their intersection.) For each algorithm, we show that with probability at least 1 − δ, ‖A − A ′ ‖F ≤ (1 + ɛ) ‖A − Ak‖F, where Ak is the “best ” rankk approximation provided by truncating the SVD of A, and where ‖X‖F is the Frobenius norm of the matrix X. The number of columns of C and rows of R is a lowdegree polynomial in k, 1/ɛ, and log(1/δ). Both the Numerical Linear Algebra community and the Theoretical Computer Science community have studied variants
Energy Minimization via Graph Cuts: Settling What is Possible
 IN IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION
, 2005
"... The recent explosion of interest in graph cut methods in computer vision naturally spawns the question: what energy functions can be minimized via graph cuts? This question was first attacked by two papers of Kolmogorov and Zabih [23, 24], in which they dealt with functions with pairwise and triplew ..."
Abstract

Cited by 61 (0 self)
 Add to MetaCart
The recent explosion of interest in graph cut methods in computer vision naturally spawns the question: what energy functions can be minimized via graph cuts? This question was first attacked by two papers of Kolmogorov and Zabih [23, 24], in which they dealt with functions with pairwise and triplewise pixel interactions. In this work, we extend their results in two directions. First, we examine the case of kwise pixel interactions; the results are derived from a purely algebraic approach. Second, we discuss the applicability of provably approximate algorithms. Both of these developments should help researchers best understand what can and cannot be achieved when designing graph cut based algorithms.