Results 1 - 10
of
495
Capacity Limits of MIMO Channels
- IEEE J. SELECT. AREAS COMMUN
, 2003
"... We provide an overview of the extensive recent results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about t ..."
Abstract
-
Cited by 419 (17 self)
- Add to MetaCart
We provide an overview of the extensive recent results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about the underlying time-varying channel model and how well it can be tracked at the receiver, as well as at the transmitter. More realistic assumptions can dramatically impact the potential capacity gains of MIMO techniques. For time-varying MIMO channels there are multiple Shannon theoretic capacity definitions and, for each definition, different correlation models and channel information assumptions that we consider. We first provide a comprehensive summary of ergodic and capacity versus outage results for single-user MIMO channels. These results indicate that the capacity gain obtained from multiple antennas heavily depends
Spectral Efficiency in the Wideband Regime
, 2002
"... The tradeoff of spectral efficiency (b/s/Hz) versus energy -per-information bit is the key measure of channel capacity in the wideband power-limited regime. This paper finds the fundamental bandwidth--power tradeoff of a general class of channels in the wideband regime characterized by low, but nonz ..."
Abstract
-
Cited by 393 (29 self)
- Add to MetaCart
The tradeoff of spectral efficiency (b/s/Hz) versus energy -per-information bit is the key measure of channel capacity in the wideband power-limited regime. This paper finds the fundamental bandwidth--power tradeoff of a general class of channels in the wideband regime characterized by low, but nonzero, spectral efficiency and energy per bit close to the minimum value required for reliable communication. A new criterion for optimality of signaling in the wideband regime is proposed, which, in contrast to the traditional criterion, is meaningful for finite-bandwidth communication.
Grassmannian beamforming for multiple-input multiple-output wireless systems
- IEEE TRANS. INFORM. THEORY
, 2003
"... Transmit beamforming and receive combining are simple methods for exploiting the significant diversity that is available in multiple-input and multiple-output (MIMO) wireless systems. Unfortunately, optimal performance requires either complete channel knowledge or knowledge of the optimal beamformi ..."
Abstract
-
Cited by 329 (38 self)
- Add to MetaCart
Transmit beamforming and receive combining are simple methods for exploiting the significant diversity that is available in multiple-input and multiple-output (MIMO) wireless systems. Unfortunately, optimal performance requires either complete channel knowledge or knowledge of the optimal beamforming vector which are not always realizable in practice. In this correspondence, a quantized maximum signal-to-noise ratio (SNR) beamforming technique is proposed where the receiver only sends the label of the best beamforming vector in a predetermined codebook to the transmitter. By using the distribution of the optimal beamforming vector in independent identically distributed Rayleigh fading matrix channels, the codebook design problem is solved and related to the problem of Grassmannian line packing. The proposed design criterion is flexible enough to allow for side constraints on the codebook vectors. Bounds on the codebook size are derived to guarantee full diversity order. Results on the density of Grassmannian line packings are derived and used to develop bounds on the codebook size given a capacity or SNR loss. Monte Carlo simulations are presented that compare the probability of error for different quantization strategies.
Unitary Space-Time Modulation for Multiple-Antenna Communications in Rayleigh Flat Fading
- IEEE Trans. Inform. Theory
, 1998
"... Motivated by information-theoretic considerations, we propose a signalling scheme, unitary space-time modulation, for multiple-antenna communication links. This modulation is ideally suited for Rayleigh fast-fading environments, since it does not require the receiver to know or learn the propagation ..."
Abstract
-
Cited by 308 (18 self)
- Add to MetaCart
(Show Context)
Motivated by information-theoretic considerations, we propose a signalling scheme, unitary space-time modulation, for multiple-antenna communication links. This modulation is ideally suited for Rayleigh fast-fading environments, since it does not require the receiver to know or learn the propagation coefficients. Unitary space-time modulation uses constellations of T \cross M space-time signals {\Phi_l, l= 1,...L},where T represents the coherence interval during which the fading is approximately constant, and M > M . We design some multiple-antenna signal constellations and simulate their effectiveness as measured by bit error probability with maximum likelihood decoding. We demonstrate that two antennas have a 6-dB diversity gain over one antenna at 15-db SNR.
Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel
- IEEE TRANS. INFORM. THEORY
, 2002
"... In this paper, we study the capacity of multiple-antenna fading channels. We focus on the scenario where the fading coefficients vary quickly; thus an accurate estimation of the coefficients is generally not available to either the transmitter or the receiver. We use a noncoherent block fading model ..."
Abstract
-
Cited by 273 (7 self)
- Add to MetaCart
In this paper, we study the capacity of multiple-antenna fading channels. We focus on the scenario where the fading coefficients vary quickly; thus an accurate estimation of the coefficients is generally not available to either the transmitter or the receiver. We use a noncoherent block fading model proposed by Marzetta and Hochwald. The model does not assume any channel side information at the receiver or at the transmitter, but assumes that the coefficients remain constant for a coherence interval of length symbol periods. We compute the asymptotic capacity of this channel at high signal-to-noise ratio (SNR) in terms of the coherence time , the number of transmit antennas , and the number of receive antennas . While the capacity gain of the coherent multiple antenna channel is min bits per second per hertz for every 3-dB increase in SNR, the corresponding gain for the noncoherent channel turns out to be (1 ) bits per second per herz, where = min 2 . The capacity expression has a geometric interpretation as sphere packing in the Grassmann manifold.
On Beamforming with Finite Rate Feedback in Multiple Antenna Systems
, 2003
"... In this paper, we study a multiple antenna system where the transmitter is equipped with quantized information about instantaneous channel realizations. Assuming that the transmitter uses the quantized information for beamforming, we derive a universal lower bound on the outage probability for any f ..."
Abstract
-
Cited by 272 (14 self)
- Add to MetaCart
(Show Context)
In this paper, we study a multiple antenna system where the transmitter is equipped with quantized information about instantaneous channel realizations. Assuming that the transmitter uses the quantized information for beamforming, we derive a universal lower bound on the outage probability for any finite set of beamformers. The universal lower bound provides a concise characterization of the gain with each additional bit of feedback information regarding the channel. Using the bound, it is shown that finite information systems approach the perfect information case as (t 1)2 , where B is the number of feedback bits and t is the number of transmit antennas. The geometrical bounding technique, used in the proof of the lower bound, also leads to a design criterion for good beamformers, whose outage performance approaches the lower bound. The design criterion minimizes the maximum inner product between any two beamforming vectors in the beamformer codebook, and is equivalent to the problem of designing unitary space time codes under certain conditions. Finally, we show that good beamformers are good packings of 2-dimensional subspaces in a 2t-dimensional real Grassmannian manifold with chordal distance as the metric.
Differential space-time modulation
- IEEE Trans. Inform. Theory
, 2000
"... Abstract—Space–time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath radio channels. Thus far, most work on space–time coding has assumed that perfect channel estimates are available at the receiver. In certain situations, however, it may b ..."
Abstract
-
Cited by 269 (1 self)
- Add to MetaCart
(Show Context)
Abstract—Space–time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath radio channels. Thus far, most work on space–time coding has assumed that perfect channel estimates are available at the receiver. In certain situations, however, it may be difficult or costly to estimate the channel accurately, in which case it is natural to consider the design of modulation techniques that do not require channel estimates at the transmitter or receiver. We propose a general approach to differential modulation for multiple transmit antennas based on group codes. This approach can be applied to any number of transmit and receive antennas, and any signal constellation. We also derive low-complexity dif-ferential receivers, error bounds, and modulator design criteria, which we use to construct optimal differential modulation schemes for two transmit antennas. These schemes can be demodulated with or without channel estimates. This permits the receiver to exploit channel estimates when they are available. Performance degrades by approximately 3 dB when estimates are not available. Index Terms—Differential modulation, group codes, multi-path channels, noncoherent communication, space–time coding, transmit diversity. I.
Distributed space-time coding in wireless relay networks,”IEEE Trans.
- on Wireless Communications,
, 2006
"... Abstract In this paper, we present a coding strategy for half duplex wireless relay networks, where we assume no channel knowledge at any of the transmitter, receiver or relays. The coding scheme uses distributed space-time coding, that is, the relay nodes cooperate to encode the transmitted signal ..."
Abstract
-
Cited by 225 (16 self)
- Add to MetaCart
(Show Context)
Abstract In this paper, we present a coding strategy for half duplex wireless relay networks, where we assume no channel knowledge at any of the transmitter, receiver or relays. The coding scheme uses distributed space-time coding, that is, the relay nodes cooperate to encode the transmitted signal so that the receiver senses a space-time codeword. It is inspired by noncoherent differential techniques. The proposed strategy is available for any number of relays nodes. It is analyzed, and shown to yield a diversity linear in the number of relays. We also study the resistance of the scheme to relay node failures, and show that a network with R relay nodes and d of them down behaves, as far as diversity is concerned, as a network with R − d nodes. Finally, our construction can be easily generalized to the case where the transmitter and receiver nodes have several antennas.