Results 1 - 10
of
218
Human Activity Analysis: A Review
- TO APPEAR. ACM COMPUTING SURVEYS.
"... Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applicati ..."
Abstract
-
Cited by 214 (6 self)
- Add to MetaCart
Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applications require an automated recognition of high-level activities, composed of multiple simple (or atomic) actions of persons. This paper provides a detailed overview of various state-of-the-art research papers on human activity recognition. We discuss both the methodologies developed for simple human actions and those for high-level activities. An approach-based taxonomy is chosen, comparing the advantages and limitations of each approach. Recognition methodologies for an analysis of simple actions of a single person are first presented in the paper. Space-time volume approaches and sequential approaches that represent and recognize activities directly from input images are discussed. Next, hierarchical recognition methodologies for high-level activities are presented and compared. Statistical approaches, syntactic approaches, and description-based approaches for hierarchical recognition are discussed in the paper. In addition, we further discuss the papers on the recognition of human-object interactions and group activities. Public datasets designed for the evaluation of the recognition methodologies are illustrated in our paper as well, comparing the methodologies’ performances. This review will provide the impetus for future research in more productive areas.
Modeling temporal structure of decomposable motion segments for activity classification
- in Proc. 11th European Conf. Comput. Vision, 2010
"... Abstract. Much recent research in human activity recognition has focused on the problem of recognizing simple repetitive (walking, running, waving) and punctual actions (sitting up, opening a door, hugging). However, many interesting human activities are characterized by a complex temporal compositi ..."
Abstract
-
Cited by 157 (8 self)
- Add to MetaCart
(Show Context)
Abstract. Much recent research in human activity recognition has focused on the problem of recognizing simple repetitive (walking, running, waving) and punctual actions (sitting up, opening a door, hugging). However, many interesting human activities are characterized by a complex temporal composition of simple actions. Automatic recognition of such complex actions can benefit from a good understanding of the temporal structures. We present in this paper a framework for modeling motion by exploiting the temporal structure of the human activities. In our framework, we represent activities as temporal compositions of motion segments. We train a discriminative model that encodes a temporal decomposition of video sequences, and appearance models for each motion segment. In recognition, a query video is matched to the model according to the learned appearances and motion segment decomposition. Classification is made based on the quality of matching between the motion segment classifiers and the temporal segments in the query sequence. To validate our approach, we introduce a new dataset of complex Olympic Sports activities. We show that our algorithm performs better than other state of the art methods. Key words: Activity recognition, discriminative classifiers 1
Action recognition based on a bag of 3d points.
- In Human Communicative Behavior Analysis Workshop (in conjunction with CVPR),
, 2010
"... Abstract This paper presents a method to recognize human actions from sequences of depth maps. Specifically, we employ an action graph to model explicitly the dynamics of the actions and a bag of 3D points to characterize a set of salient postures that correspond to the nodes in the action graph. I ..."
Abstract
-
Cited by 110 (6 self)
- Add to MetaCart
(Show Context)
Abstract This paper presents a method to recognize human actions from sequences of depth maps. Specifically, we employ an action graph to model explicitly the dynamics of the actions and a bag of 3D points to characterize a set of salient postures that correspond to the nodes in the action graph. In addition, we propose a simple, but effective projection based sampling scheme to sample the bag of 3D points from the depth maps. Experimental results have shown that over 90% recognition accuracy were achieved by sampling only about 1% 3D points from the depth maps. Compared to the 2D silhouette based recognition, the recognition errors were halved. In addition, we demonstrate the potential of the bag of points posture model to deal with occlusions through simulation. Abstract This paper presents a method to recognize human actions from sequences of depth maps. Specifically, we employ an action graph to model explicitly the dynamics of the actions and a bag of 3D points to characterize a set of salient postures that correspond to the nodes in the action graph. In addition, we propose a simple, but effective projection based sampling scheme to sample the bag of 3D points from the depth maps. Experimental results have shown that over 90% recognition accuracy were achieved by sampling only about 1% 3D points from the depth maps. Compared to the 2D silhouette based recognition, the recognition errors were halved. In addition, we demonstrate the potential of the bag of points posture model to deal with occlusions through simulation.
Visual event recognition in videos by learning from web data
- In CVPR. IEEE
, 2010
"... We propose a visual event recognition framework for consumer domain videos by leveraging a large amount of loosely labeled web videos (e.g., from YouTube). First, we propose a new aligned space-time pyramid matching method to measure the distances between two video clips, where each video clip is di ..."
Abstract
-
Cited by 84 (16 self)
- Add to MetaCart
(Show Context)
We propose a visual event recognition framework for consumer domain videos by leveraging a large amount of loosely labeled web videos (e.g., from YouTube). First, we propose a new aligned space-time pyramid matching method to measure the distances between two video clips, where each video clip is divided into space-time volumes over multiple levels. We calculate the pair-wise distances between any two volumes and further integrate the information from different volumes with Integer-flow Earth Mover’s Distance (EMD) to explicitly align the volumes. Second, we propose a new cross-domain learning method in order to 1) fuse the information from multiple pyramid levels and features (i.e., space-time feature and static SIFT feature) and 2) cope with the considerable variation in feature distributions between videos from two domains (i.e., web domain and consumer domain). For each pyramid level and each type of local features, we train a set of SVM classifiers based on the combined training set from two domains using multiple base kernels of different kernel types and parameters, which are fused with equal weights to obtain an average classifier. Finally, we propose a cross-domain learning method, referred to as Adaptive Multiple Kernel Learning (A-MKL), to learn an adapted classifier based on multiple base kernels and the prelearned average classifiers by minimizing both the structural risk functional and the mismatch between data distributions from two domains. Extensive experiments demonstrate the effectiveness of our proposed framework that requires only a small number of labeled consumer videos by leveraging web data. 1.
Learning latent temporal structure for complex event detection
- In CVPR
, 2012
"... In this paper, we tackle the problem of understanding the temporal structure of complex events in highly varying videos obtained from the Internet. Towards this goal, we utilize a conditional model trained in a max-margin framework that is able to automatically discover discriminative and interestin ..."
Abstract
-
Cited by 75 (2 self)
- Add to MetaCart
(Show Context)
In this paper, we tackle the problem of understanding the temporal structure of complex events in highly varying videos obtained from the Internet. Towards this goal, we utilize a conditional model trained in a max-margin framework that is able to automatically discover discriminative and interesting segments of video, while simultaneously achieving competitive accuracies on difficult detection and recognition tasks. We introduce latent variables over the frames of a video, and allow our algorithm to discover and assign sequences of states that are most discriminative for the event. Our model is based on the variable-duration hidden Markov model, and models durations of states in addition to the transitions between states. The simplicity of our model allows us to perform fast, exact inference using dynamic programming, which is extremely important when we set our sights on being able to process a very large number of videos quickly and efficiently. We show promising results on the Olympic Sports dataset [16] and the 2011 TRECVID Multimedia Event Detection task [18]. We also illustrate and visualize the semantic understanding capabilities of our model. 1.
Detecting Activities of Daily Living in First-Person Camera Views
"... We present a novel dataset and novel algorithms for the problem of detecting activities of daily living (ADL) in firstperson camera views. We have collected a dataset of 1 million frames of dozens of people performing unscripted, everyday activities. The dataset is annotated with activities, object ..."
Abstract
-
Cited by 65 (3 self)
- Add to MetaCart
(Show Context)
We present a novel dataset and novel algorithms for the problem of detecting activities of daily living (ADL) in firstperson camera views. We have collected a dataset of 1 million frames of dozens of people performing unscripted, everyday activities. The dataset is annotated with activities, object tracks, hand positions, and interaction events. ADLs differ from typical actions in that they can involve long-scale temporal structure (making tea can take a few minutes) and complex object interactions (a fridge looks different when its door is open). We develop novel representations including (1) temporal pyramids, which generalize the well-known spatial pyramid to approximate temporal correspondence when scoring a model and (2) composite object models that exploit the fact that objects look different when being interacted with. We perform an extensive empirical evaluation and demonstrate that our novel representations produce a two-fold improvement over traditional approaches. Our analysis suggests that real-world ADL recognition is “all about the objects, ” and in particular, “all about the objects being interacted with.” 1.
View invariant human action recognition using histograms of 3D joints
- IN: PROC. OF WORK. ON HUMAN ACTIVITY UNDERSTANDING FROM 3D DATA
, 2012
"... In this paper, we present a novel approach for human action recognition with histograms of 3D joint locations (HOJ3D) as a compact representation of postures. We extract the 3D skeletal joint locations from Kinect depth maps using Shotton et al.’s method [6]. The HOJ3D computed from the action depth ..."
Abstract
-
Cited by 58 (3 self)
- Add to MetaCart
In this paper, we present a novel approach for human action recognition with histograms of 3D joint locations (HOJ3D) as a compact representation of postures. We extract the 3D skeletal joint locations from Kinect depth maps using Shotton et al.’s method [6]. The HOJ3D computed from the action depth sequences are reprojected using LDA and then clustered into k posture visual words, which represent the prototypical poses of actions. The temporal evolutions of those visual words are modeled by discrete hidden Markov models (HMMs). In addition, due to the design of our spherical coordinate system and the robust 3D skeleton estimation from Kinect, our method demonstrates significant view invariance on our 3D action dataset. Our dataset is composed of 200 3D sequences of 10 indoor activities performed by 10 individuals in varied views. Our method is real-time and achieves superior results on the challenging 3D action dataset. We also tested our algorithm on the MSR Action3D dataset and our algorithm outperforms Li et al. [25] on most of the cases.
Eye Movement Analysis for Activity Recognition
- Proc. 11th Int’l Conf. Ubiquitous Computing
, 2009
"... Abstract—In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals—saccad ..."
Abstract
-
Cited by 52 (12 self)
- Add to MetaCart
(Show Context)
Abstract—In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals—saccades, fixations, and blinks—and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities. Index Terms—Ubiquitous computing, feature evaluation and selection, pattern analysis, signal processing. Ç 1
Understanding video events: A survey of methods for automatic interpretation of semantic occurrences in videos
- TSMC
"... Abstract: Understanding Video Events, the translation of low-level content in video sequences into highlevel semantic concepts, is a research topic that has received much interest in recent years. Important applications of this work include smart surveillance systems, semantic video database indexin ..."
Abstract
-
Cited by 51 (0 self)
- Add to MetaCart
(Show Context)
Abstract: Understanding Video Events, the translation of low-level content in video sequences into highlevel semantic concepts, is a research topic that has received much interest in recent years. Important applications of this work include smart surveillance systems, semantic video database indexing, and interactive systems. This technology can be applied to several video domains including: airport terminal, parking lot, traffic, subway stations, aerial surveillance, and sign language data. In this work we survey the two main components of the event understanding process: Abstraction and Event modeling. Abstraction is the process of molding the data into informative units to be used as input to the event model. Event modeling is devoted to describing events of interest formally and enabling recognition of these events as they occur in the video sequence. Event modeling can be further decomposed in the categories of Pattern Recognition Methods, State Event Models, and Semantic Event Models. In this survey we discuss this proposed taxonomy of the literature, offer a unifying terminology, and discuss popular abstraction schemes (e.g. Motion History Images) and event modeling formalisms (e.g. Hidden Markov Model) and their use in video event understanding using extensive examples from the literature. Finally we consider the application domain of video event understanding in light of the proposed taxonomy, and propose future directions for research in this field.
Understanding Egocentric Activities
, 2011
"... We present a method to analyze daily activities, such as meal preparation, using video from an egocentric camera. Our method performs inference about activities, actions, hands, and objects. Daily activities are a challenging domain for activity recognition which are well-suited to an egocentric app ..."
Abstract
-
Cited by 46 (8 self)
- Add to MetaCart
We present a method to analyze daily activities, such as meal preparation, using video from an egocentric camera. Our method performs inference about activities, actions, hands, and objects. Daily activities are a challenging domain for activity recognition which are well-suited to an egocentric approach. In contrast to previous activity recognition methods, our approach does not require pre-trained detectors for objects and hands. Instead we demonstrate the ability to learn a hierarchical model of an activity by exploiting the consistent appearance of objects, hands, and actions that results from the egocentric context. We show that joint modeling of activities, actions, and objects leads to superior performance in comparison to the case where they are considered independently. We introduce a novel representation of actions based on object-hand interactions and experimentally demonstrate the superior performance of our representation in comparison to standard activity representations such as bag of words.