Results 1 - 10
of
651
Unsupervised learning of human action categories using spatial-temporal words
- In Proc. BMVC
, 2006
"... Imagine a video taken on a sunny beach, can a computer automatically tell what is happening in the scene? Can it identify different human activities in the video, such as water surfing, people walking and lying on the beach? To automatically classify or localize different actions in video sequences ..."
Abstract
-
Cited by 494 (8 self)
- Add to MetaCart
(Show Context)
Imagine a video taken on a sunny beach, can a computer automatically tell what is happening in the scene? Can it identify different human activities in the video, such as water surfing, people walking and lying on the beach? To automatically classify or localize different actions in video sequences is very useful for a variety of tasks, such as video surveillance, objectlevel video summarization, video indexing, digital library organization, etc. However, it remains a challenging task for computers to achieve robust action recognition due to cluttered background, camera motion, occlusion, and geometric and photometric variances of objects. For example, in a live video of a skating competition, the skater moves rapidly across the rink, and the camera also moves to follow the skater. With moving camera, non-stationary background, and moving target, few vision algorithms could identify, categorize and
Evaluation of local spatio-temporal features for action recognition
- University of Central Florida, U.S.A
, 2009
"... Local space-time features have recently become a popular video representation for action recognition. Several methods for feature localization and description have been proposed in the literature and promising recognition results were demonstrated for a number of action classes. The comparison of ex ..."
Abstract
-
Cited by 274 (25 self)
- Add to MetaCart
(Show Context)
Local space-time features have recently become a popular video representation for action recognition. Several methods for feature localization and description have been proposed in the literature and promising recognition results were demonstrated for a number of action classes. The comparison of existing methods, however, is often limited given the different experimental settings used. The purpose of this paper is to evaluate and compare previously proposed space-time features in a common experimental setup. In particular, we consider four different feature detectors and six local feature descriptors and use a standard bag-of-features SVM approach for action recognition. We investigate the performance of these methods on a total of 25 action classes distributed over three datasets with varying difficulty. Among interesting conclusions, we demonstrate that regular sampling of space-time features consistently outperforms all tested space-time interest point detectors for human actions in realistic settings. We also demonstrate a consistent ranking for the majority of methods over different datasets and discuss their advantages and limitations. 1
A biologically inspired system for action recognition
- In ICCV
, 2007
"... We present a biologically-motivated system for the recognition of actions from video sequences. The approach builds on recent work on object recognition based on hierarchical feedforward architectures [25, 16, 20] and extends a neurobiological model of motion processing in the visual cortex [10]. Th ..."
Abstract
-
Cited by 238 (15 self)
- Add to MetaCart
(Show Context)
We present a biologically-motivated system for the recognition of actions from video sequences. The approach builds on recent work on object recognition based on hierarchical feedforward architectures [25, 16, 20] and extends a neurobiological model of motion processing in the visual cortex [10]. The system consists of a hierarchy of spatio-temporal feature detectors of increasing complexity: an input sequence is first analyzed by an array of motiondirection sensitive units which, through a hierarchy of processing stages, lead to position-invariant spatio-temporal feature detectors. We experiment with different types of motion-direction sensitive units as well as different system architectures. As in [16], we find that sparse features in intermediate stages outperform dense ones and that using a simple feature selection approach leads to an efficient system that performs better with far fewer features. We test the approach on different publicly available action datasets, in all cases achieving the highest results reported to date. 1.
Action MACH: a spatio-temporal maximum average correlation height filter for action recognition
- In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
, 2008
"... In this paper we introduce a template-based method for recognizing human actions called Action MACH. Our approach is based on a Maximum Average Correlation Height (MACH) filter. A common limitation of template-based methods is their inability to generate a single template using a collection of examp ..."
Abstract
-
Cited by 237 (10 self)
- Add to MetaCart
(Show Context)
In this paper we introduce a template-based method for recognizing human actions called Action MACH. Our approach is based on a Maximum Average Correlation Height (MACH) filter. A common limitation of template-based methods is their inability to generate a single template using a collection of examples. MACH is capable of capturing intra-class variability by synthesizing a single Action MACH filter for a given action class. We generalize the traditional MACH filter to video (3D spatiotemporal volume), and vector valued data. By analyzing the response of the filter in the frequency domain, we avoid the high computational cost commonly incurred in template-based approaches. Vector valued data is analyzed using the Clifford Fourier transform, a generalization of the Fourier transform intended for both scalar and vector-valued data. Finally, we perform an extensive set of experiments and compare our method with some of the most recent approaches in the field by using publicly available datasets, and two new annotated human action datasets which include actions performed in classic feature films and sports broadcast television. 1.
A spatio-temporal descriptor based on 3d-gradients
- In BMVC’08
"... In this work, we present a novel local descriptor for video sequences. The proposed descriptor is based on histograms of oriented 3D spatio-temporal gradients. Our contribution is four-fold. (i) To compute 3D gradients for arbitrary scales, we develop a memory-efficient algorithm based on integral v ..."
Abstract
-
Cited by 234 (6 self)
- Add to MetaCart
(Show Context)
In this work, we present a novel local descriptor for video sequences. The proposed descriptor is based on histograms of oriented 3D spatio-temporal gradients. Our contribution is four-fold. (i) To compute 3D gradients for arbitrary scales, we develop a memory-efficient algorithm based on integral videos. (ii) We propose a generic 3D orientation quantization which is based on regular polyhedrons. (iii) We perform an in-depth evaluation of all descriptor parameters and optimize them for action recognition. (iv) We apply our descriptor to various action datasets (KTH, Weizmann, Hollywood) and show that we outperform the state-of-the-art. 1
Progressive search space reduction for human pose estimation
- In CVPR
, 2008
"... The objective of this paper is to estimate 2D human pose as a spatial configuration of body parts in TV and movie video shots. Such video material is uncontrolled and extremely challenging. We propose an approach that progressively reduces the search space for body parts, to greatly improve the chan ..."
Abstract
-
Cited by 226 (30 self)
- Add to MetaCart
(Show Context)
The objective of this paper is to estimate 2D human pose as a spatial configuration of body parts in TV and movie video shots. Such video material is uncontrolled and extremely challenging. We propose an approach that progressively reduces the search space for body parts, to greatly improve the chances that pose estimation will succeed. This involves two contributions: (i) a generic detector using a weak model of pose to substantially reduce the full pose search space; and (ii) employing ‘grabcut ’ initialized on detected regions proposed by the weak model, to further prune the search space. Moreover, we also propose (iii) an integrated spatiotemporal model covering multiple frames to refine pose estimates from individual frames, with inference using belief propagation. The method is fully automatic and self-initializing, and explains the spatio-temporal volume covered by a person moving in a shot, by soft-labeling every pixel as belonging to a particular body part or to the background. We demonstrate upper-body pose estimation by an extensive evaluation over 70000 frames from four episodes of the TV series Buffy the vampire slayer, and present an application to fullbody action recognition on the Weizmann dataset. 1.
Machine recognition of human activities: A survey
, 2008
"... The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as content-based video annotation and retrieval, highlight extraction and video summarization require recognition of the a ..."
Abstract
-
Cited by 218 (0 self)
- Add to MetaCart
(Show Context)
The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as content-based video annotation and retrieval, highlight extraction and video summarization require recognition of the activities occurring in the video. The analysis of human activities in videos is an area with increasingly important consequences from security and surveillance to entertainment and personal archiving. Several challenges at various levels of processing—robustness against errors in low-level processing, view and rate-invariant representations at midlevel processing and semantic representation of human activities at higher level processing—make this problem hard to solve. In this review paper, we present a comprehensive survey of efforts in the past couple of decades to address the problems of representation, recognition, and learning of human activities from video and related applications. We discuss the problem at two major levels of complexity: 1) “actions ” and 2) “activities. ” “Actions ” are characterized by simple motion patterns typically executed by a single human. “Activities ” are more complex and involve coordinated actions among a small number of humans. We will discuss several approaches and classify them according to their ability to handle varying degrees of complexity as interpreted above. We begin with a discussion of approaches to model the simplest of action classes known as atomic or primitive actions that do not require sophisticated dynamical modeling. Then, methods to model actions with more complex dynamics are discussed. The discussion then leads naturally to methods for higher level representation of complex activities.
Human Activity Analysis: A Review
- TO APPEAR. ACM COMPUTING SURVEYS.
"... Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applicati ..."
Abstract
-
Cited by 214 (6 self)
- Add to MetaCart
Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applications require an automated recognition of high-level activities, composed of multiple simple (or atomic) actions of persons. This paper provides a detailed overview of various state-of-the-art research papers on human activity recognition. We discuss both the methodologies developed for simple human actions and those for high-level activities. An approach-based taxonomy is chosen, comparing the advantages and limitations of each approach. Recognition methodologies for an analysis of simple actions of a single person are first presented in the paper. Space-time volume approaches and sequential approaches that represent and recognize activities directly from input images are discussed. Next, hierarchical recognition methodologies for high-level activities are presented and compared. Statistical approaches, syntactic approaches, and description-based approaches for hierarchical recognition are discussed in the paper. In addition, we further discuss the papers on the recognition of human-object interactions and group activities. Public datasets designed for the evaluation of the recognition methodologies are illustrated in our paper as well, comparing the methodologies’ performances. This review will provide the impetus for future research in more productive areas.
Action Bank: A High-Level Representation of Activity in Video
"... Activity recognition in video is dominated by low- and mid-level features, and while demonstrably capable, by nature, these features carry little semantic meaning. Inspired by the recent object bank approach to image representation, we present Action Bank, a new high-level representation of video. A ..."
Abstract
-
Cited by 170 (8 self)
- Add to MetaCart
(Show Context)
Activity recognition in video is dominated by low- and mid-level features, and while demonstrably capable, by nature, these features carry little semantic meaning. Inspired by the recent object bank approach to image representation, we present Action Bank, a new high-level representation of video. Action bank is comprised of many individual action detectors sampled broadly in semantic space as well as viewpoint space. Our representation is constructed to be semantically rich and even when paired with simple linear SVM classifiers is capable of highly discriminative performance. We have tested action bank on four major activity recognition benchmarks. In all cases, our performance is significantly better than the state of the art, namely 98.2% on KTH (better by 3.3%), 95.0 % on UCF Sports (better by