Results 1  10
of
730
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 726 (8 self)
 Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes&quot;). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decisiontree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed output representations. This paper compares these three approaches to a new technique in which errorcorrecting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of over tting avoidance techniques such as decisiontree pruning. Finally,we show thatlike the other methodsthe errorcorrecting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that errorcorrecting output codes provide a generalpurpose method for improving the performance of inductive learning programs on multiclass problems.
Greedy Randomized Adaptive Search Procedures
, 2002
"... GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract

Cited by 647 (82 self)
 Add to MetaCart
GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. In this chapter, we first describe the basic components of GRASP. Successful implementation techniques and parameter tuning strategies are discussed and illustrated by numerical results obtained for different applications. Enhanced or alternative solution construction mechanisms and techniques to speed up the search are also described: Reactive GRASP, cost perturbations, bias functions, memory and learning, local search on partially constructed solutions, hashing, and filtering. We also discuss in detail implementation strategies of memorybased intensification and postoptimization techniques using pathrelinking. Hybridizations with other metaheuristics, parallelization strategies, and applications are also reviewed.
Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems
 ARTIF. INTELL
, 1992
"... This paper describes a simple heuristic approach to solving largescale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a valueorderin ..."
Abstract

Cited by 457 (6 self)
 Add to MetaCart
This paper describes a simple heuristic approach to solving largescale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a valueordering heuristic, the minconflicts heuristic, that attempts to minimize the number of constraint violations after each step. The heuristic can be used with a variety of different search strategies. We demonstrate empirically that on the nqueens problem, a technique based on this approach performs orders of magnitude better than traditional backtracking techniques. We also describe a scheduling application where the approach has been used successfully. A theoretical analysis is presented both to explain why this method works well on certain types of problems and to predict when it is likely to be One of the most promising general approaches for solving combinatorial search problems is to generate an
GSAT and Dynamic Backtracking
 Journal of Artificial Intelligence Research
, 1994
"... There has been substantial recent interest in two new families of search techniques. One family consists of nonsystematic methods such as gsat; the other contains systematic approaches that use a polynomial amount of justification information to prune the search space. This paper introduces a new te ..."
Abstract

Cited by 386 (15 self)
 Add to MetaCart
There has been substantial recent interest in two new families of search techniques. One family consists of nonsystematic methods such as gsat; the other contains systematic approaches that use a polynomial amount of justification information to prune the search space. This paper introduces a new technique that combines these two approaches. The algorithm allows substantial freedom of movement in the search space but enough information is retained to ensure the systematicity of the resulting analysis. Bounds are given for the size of the justification database and conditions are presented that guarantee that this database will be polynomial in the size of the problem in question. 1 INTRODUCTION The past few years have seen rapid progress in the development of algorithms for solving constraintsatisfaction problems, or csps. Csps arise naturally in subfields of AI from planning to vision, and examples include propositional theorem proving, map coloring and scheduling problems. The probl...
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 276 (13 self)
 Add to MetaCart
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feedforward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
Hard and Easy Distributions of SAT Problems
, 1992
"... We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to ..."
Abstract

Cited by 255 (20 self)
 Add to MetaCart
(Show Context)
We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiabilitytesting procedures. Introduction Many computational tasks of interest to AI, to the extent that they can be precisely characterized at all, can be shown to be NPhard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NPhard tasks degrades rapidly with small increases in input size, something will need to be given up to obtain acceptable behavior....
Using CSP lookback techniques to solve realworld SAT instances
, 1997
"... We report on the performance of an enhanced version of the “DavisPutnam ” (DP) proof procedure for propositional satisfiability (SAT) on large instances derived from realworld problems in planning, scheduling, and circuit diagnosis and synthesis. Our results show that incorporating CSP lookback tec ..."
Abstract

Cited by 232 (1 self)
 Add to MetaCart
We report on the performance of an enhanced version of the “DavisPutnam ” (DP) proof procedure for propositional satisfiability (SAT) on large instances derived from realworld problems in planning, scheduling, and circuit diagnosis and synthesis. Our results show that incorporating CSP lookback techniques especially the relatively new technique of relevancebounded learning renders easy many problems which otherwise are beyond DP’s reach. Frequently they make DP, a systematic algorithm, perform as well or better than stochastic SAT algorithms such as GSAT or WSAT. We recommend that such techniques be included as options in implementations of DP, just as they are in systematic algorithms for the more general constraint satisfaction problem.
Experimental Results on the Crossover Point in Satisfiability Problems
 In Proceedings of the Eleventh National Conference on Artificial Intelligence
, 1993
"... Determining whether a propositional theory is satisfiable is a prototypical example of an NPcomplete problem. Further, a large number of problems that occur in knowledge representation, learning, planning, and other areas of AI are essentially satisfiability problems. This paper reports on a series ..."
Abstract

Cited by 209 (3 self)
 Add to MetaCart
Determining whether a propositional theory is satisfiable is a prototypical example of an NPcomplete problem. Further, a large number of problems that occur in knowledge representation, learning, planning, and other areas of AI are essentially satisfiability problems. This paper reports on a series of experiments to determine the location of the crossover point  the point at which half the randomly generated propositional theories with a given number of variables and given number of clauses are satisfiable  and to assess the relationship of the crossover point to the difficulty of determining satisfiability. We have found empirically that, for 3sat, the number of clauses at the crossover point is a linear function of the number of variables. This result is of theoretical interest since it is not clear why such a linear relationship should exist, but it is also of practical interest since recent experiments [ Mitchell et al. 92; Cheeseman et al. 91 ] indicate that the most comput...
SymmetryBreaking Predicates for Search Problems
, 1996
"... Many reasoning and optimization problems exhibit symmetries. Previous work has shown how special purpose algorithms can make use of these symmetries to simplify reasoning. We present a general scheme whereby symmetries are exploited by adding "symmetrybreaking" predicates to the the ..."
Abstract

Cited by 198 (1 self)
 Add to MetaCart
Many reasoning and optimization problems exhibit symmetries. Previous work has shown how special purpose algorithms can make use of these symmetries to simplify reasoning. We present a general scheme whereby symmetries are exploited by adding "symmetrybreaking" predicates to the theory. Our approach
A Survey of Automated Timetabling
, 1999
"... The timetabling problem consists in scheduling a sequence of lectures between teachers and students in a prefixed period of time (typically a week), satisfying a set of constraints of various types. A large number of variants of the timetabling problem have been proposed in the literature, which d ..."
Abstract

Cited by 196 (16 self)
 Add to MetaCart
The timetabling problem consists in scheduling a sequence of lectures between teachers and students in a prefixed period of time (typically a week), satisfying a set of constraints of various types. A large number of variants of the timetabling problem have been proposed in the literature, which differ from each other based on the type of institution involved (university or school) and the type of constraints. This problem, that has been traditionally considered in the operational research field, has recently been tackled with techniques belonging also to Artificial Intelligence (e.g., genetic algorithms, tabu search, and constraint satisfaction). In this paper, we survey the various formulations of the problem, and the techniques and algorithms used for its solution.