Results 1  10
of
617
Face Recognition: A Literature Survey
, 2000
"... ... This paper provides an uptodate critical survey of still and videobased face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an uptodate review of the existing literature, and the second is to offer some insights into ..."
Abstract

Cited by 1398 (21 self)
 Add to MetaCart
... This paper provides an uptodate critical survey of still and videobased face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an uptodate review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition,
Fast and robust fixedpoint algorithms for independent component analysis
 IEEE TRANS. NEURAL NETW
, 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract

Cited by 884 (34 self)
 Add to MetaCart
(Show Context)
Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informationtheoretic approach and the projection pursuit approach. Using maximum entropy approximations of differential entropy, we introduce a family of new contrast (objective) functions for ICA. These contrast functions enable both the estimation of the whole decomposition by minimizing mutual information, and estimation of individual independent components as projection pursuit directions. The statistical properties of the estimators based on such contrast functions are analyzed under the assumption of the linear mixture model, and it is shown how to choose contrast functions that are robust and/or of minimum variance. Finally, we introduce simple fixedpoint algorithms for practical optimization of the contrast functions. These algorithms optimize the contrast functions very fast and reliably.
Independent component analysis: algorithms and applications
 NEURAL NETWORKS
, 2000
"... ..."
(Show Context)
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 513 (17 self)
 Add to MetaCart
(Show Context)
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
Nonnegative matrix factorization with sparseness constraints,”
 Journal of Machine Learning Research,
, 2004
"... Abstract Nonnegative matrix factorization (NMF) is a recently developed technique for finding partsbased, linear representations of nonnegative data. Although it has successfully been applied in several applications, it does not always result in partsbased representations. In this paper, we sho ..."
Abstract

Cited by 498 (0 self)
 Add to MetaCart
Abstract Nonnegative matrix factorization (NMF) is a recently developed technique for finding partsbased, linear representations of nonnegative data. Although it has successfully been applied in several applications, it does not always result in partsbased representations. In this paper, we show how explicitly incorporating the notion of 'sparseness' improves the found decompositions. Additionally, we provide complete MATLAB code both for standard NMF and for our extension. Our hope is that this will further the application of these methods to solving novel dataanalysis problems.
A Parametric Texture Model based on Joint Statistics of Complex Wavelet Coefficients
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 2000
"... We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We de ..."
Abstract

Cited by 424 (13 self)
 Add to MetaCart
(Show Context)
We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We develop an efficient algorithm for synthesizing random images subject to these constraints, by iteratively projecting onto the set of images satisfying each constraint, and we use this to test the perceptual validity of the model. In particular, we demonstrate the necessity of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are removed from the set. We also demonstrate the power of our model by successfully synthesizing examples drawn from a diverse collection of artificial and natural textures.
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
 IN ICML’09
, 2009
"... ..."
Face recognition by elastic bunch graph matching,
 IEEE Trans. Patt. Anal. Mach. Intell.
, 1997
"... Abstract We present a system for recognizing human faces from single images out of a large database containing one image per person. The task is difficult because of image variation in terms of position, size, expression, and pose. The system collapses most of this variance by extracting concise fa ..."
Abstract

Cited by 367 (9 self)
 Add to MetaCart
Abstract We present a system for recognizing human faces from single images out of a large database containing one image per person. The task is difficult because of image variation in terms of position, size, expression, and pose. The system collapses most of this variance by extracting concise face descriptions in the form of image graphs. In these, fiducial points on the face (eyes, mouth, etc.) are described by sets of wavelet components (jets). Image graph extraction is based on a novel approach, the bunch graph, which is constructed from a small set of sample image graphs. Recognition is based on a straightforward comparison of image graphs. We report recognition experiments on the FERET database as well as the Bochum database, including recognition across pose.
Independent Component Filters Of Natural Images Compared With Simple Cells In Primary Visual Cortex
, 1998
"... this article we investigate to what extent the statistical properties of natural images can be used to understand the variation of receptive field properties of simple cells in the mammalian primary visual cortex. The receptive fields of simple cells have been studied extensively (e.g., Hubel & ..."
Abstract

Cited by 357 (0 self)
 Add to MetaCart
(Show Context)
this article we investigate to what extent the statistical properties of natural images can be used to understand the variation of receptive field properties of simple cells in the mammalian primary visual cortex. The receptive fields of simple cells have been studied extensively (e.g., Hubel & Wiesel 1968, DeValois et al. 1982a, DeAngelis et al. 1993): they are localised in space and time, have bandpass characteristics in the spatial and temporal frequency domains, are oriented, and are often sensitive to the direction of motion of a stimulus. Here we will concentrate on the spatial properties of simple cells. Several hypotheses as to the function of these cells have been proposed. As the cells preferentially respond to oriented edges or lines, they can be viewed as edge or line detectors. Their joint localisation in both the spatial domain and the spatial frequency domain has led to the suggestion that they mimic Gabor filters, minimising uncertainty in both domains (Daugman 1980, Marcelja 1980). More recently, the match between the operations performed by simple cells and the wavelet transform has attracted attention (e.g., Field 1993). The approaches based on Gabor filters and wavelets basically consider processing by the visual cortex as a general image processing strategy, relatively independent of detailed assumptions about image statistics. On the other hand, the edge and line detector hypothesis is based on the intuitive notion that edges and lines are both abundant and important in images. This theme of relating simple cell properties with the statistics of natural images was explored extensively by Field (1987, 1994). He proposed that the cells are optimized specifically for coding natural images. He argued that one possibility for such a code, sparse coding...
Classifying Facial Actions
 IEEE Trans. Pattern Anal and Machine Intell
, 1999
"... AbstractÐThe Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trai ..."
Abstract

Cited by 341 (36 self)
 Add to MetaCart
(Show Context)
AbstractÐThe Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions.