Results 1 - 10
of
121
Tussle in cyberspace: Defining tomorrow’s Internet
- In Proc. ACM SIGCOMM
, 2002
"... Abstract—The architecture of the Internet is based on a number of principles, including the self-describing datagram packet, the end-to-end arguments, diversity in technology and global addressing. As the Internet has moved from a research curiosity to a recognized component of mainstream society, n ..."
Abstract
-
Cited by 307 (10 self)
- Add to MetaCart
(Show Context)
Abstract—The architecture of the Internet is based on a number of principles, including the self-describing datagram packet, the end-to-end arguments, diversity in technology and global addressing. As the Internet has moved from a research curiosity to a recognized component of mainstream society, new requirements have emerged that suggest new design principles, and perhaps suggest that we revisit some old ones. This paper explores one important reality that surrounds the Internet today: different stakeholders that are part of the Internet milieu have interests that may be adverse to each other, and these parties each vie to favor their particular interests. We call this process “the tussle.” Our position is that accommodating this tussle is crucial to the evolution of the network’s technical architecture. We discuss some examples of tussle, and offer some technical design principles that take it into account. Index Terms—Competition, design principles, economics, network architecture, trust, tussle. I.
A Layered Naming Architecture for the Internet
, 2004
"... Currently the Internet has only one level of name resolution, DNS, which converts user-level domain names into IP addresses. In this paper we borrow liberally from the literature to argue that there should be three levels of name resolution: from user-level descriptors to service identifiers; from s ..."
Abstract
-
Cited by 143 (9 self)
- Add to MetaCart
Currently the Internet has only one level of name resolution, DNS, which converts user-level domain names into IP addresses. In this paper we borrow liberally from the literature to argue that there should be three levels of name resolution: from user-level descriptors to service identifiers; from service identifiers to endpoint identifiers; and from endpoint identifiers to IP addresses. These additional levels of naming and resolution (1) allow services and data to be first class Internet objects and (2) facilitate mobility and provide an elegant way to integrate middleboxes into the Internet architecture. We further argue that flat names are a natural choice for the service and endpoint identifiers. Hence, this architecture requires scalable resolution of flat names, a capability that distributed hash tables (DHTs) can provide.
How to Lease the Internet in Your Spare Time
- ACM SIGCOMM Computer Communication Review
, 2007
"... Today’s Internet Service Providers (ISPs) serve two roles: managing their network infrastructure and providing (arguably limited) services to end users. We argue that coupling these roles impedes the deployment of new protocols and architectures, and that the future Internet should support two separ ..."
Abstract
-
Cited by 135 (19 self)
- Add to MetaCart
(Show Context)
Today’s Internet Service Providers (ISPs) serve two roles: managing their network infrastructure and providing (arguably limited) services to end users. We argue that coupling these roles impedes the deployment of new protocols and architectures, and that the future Internet should support two separate entities: infrastructure providers (who manage the physical infrastructure) and service providers (who deploy network protocols and offer end-to-end services). We present a high-level design for Cabo, an architecture that enables this separation; we also describe challenges associated with realizing this architecture.
Declarative Routing: Extensible Routing with Declarative Queries
, 2005
"... The Internet's core routing infrastructure, while arguably robust and efficient, has proven to be difficult to evolve to accommodate the needs of new applications. Prior research on this problem has included new hard-coded routing protocols on the one hand, and fully extensible Active Networks ..."
Abstract
-
Cited by 133 (45 self)
- Add to MetaCart
The Internet's core routing infrastructure, while arguably robust and efficient, has proven to be difficult to evolve to accommodate the needs of new applications. Prior research on this problem has included new hard-coded routing protocols on the one hand, and fully extensible Active Networks on the other. In this paper, we explore a new point in this design space that aims to strike a better balance between the extensibility and robustness of a routing infrastructure. The basic idea of our solution, which we call declarative routing, is to express routing protocols using a database query language. We show that our query language is a natural fit for routing, and can express a variety of well-known routing protocols in a compact and clean fashion. We discuss the security of our proposal in terms of its computational expressive power and language design. Via simulation, and deployment on PlanetLab, we demonstrate that our system imposes no fundamental limits relative to traditional protocols, is amenable to query optimizations, and can sustain long-lived routes under
MIRO: Multi-path Interdomain ROuting
- SIGCOMM'06
, 2006
"... The Internet consists of thousands of independent domains with different, and sometimes competing, business interests. However, the current interdomain routing protocol (BGP) limits each router to using a single route for each destination prefix, which may not satisfy the diverse requirements of end ..."
Abstract
-
Cited by 115 (7 self)
- Add to MetaCart
(Show Context)
The Internet consists of thousands of independent domains with different, and sometimes competing, business interests. However, the current interdomain routing protocol (BGP) limits each router to using a single route for each destination prefix, which may not satisfy the diverse requirements of end users. Recent proposals for source routing offer an alternative where end hosts or edge routers select the end-to-end paths. However, source routing leaves transit domains with very little control and introduces difficult scalability and security challenges. In this paper, we present a multi-path interdomain routing protocol called MIRO that offers substantial flexibility, while giving transit domains control over the flow of traffic through their infrastructure and avoiding state explosion in disseminating reachability information. In MIRO, routers learn default routes through the existing BGP protocol, and arbitrary pairs of domains can negotiate the use of additional paths (bound to tunnels in the data plane) tailored to their special needs. MIRO retains the simplicity of BGP for most traffic, and remains backwards compatible with BGP to allow for incremental deployability. Experiments with Internet topology and routing data illustrate that MIRO offers tremendous flexibility for path selection with reasonable overhead.
A Comparison of Overlay Routing and Multihoming Route Control
, 2004
"... The limitations of BGP routing in the Internet are often blamed for poor end-to-end performance and prolonged connectivity interruptions. Recent work advocates using overlays to effectively bypass BGP’s path selection in order to improve performance and fault tolerance. In this paper, we explore the ..."
Abstract
-
Cited by 110 (7 self)
- Add to MetaCart
(Show Context)
The limitations of BGP routing in the Internet are often blamed for poor end-to-end performance and prolonged connectivity interruptions. Recent work advocates using overlays to effectively bypass BGP’s path selection in order to improve performance and fault tolerance. In this paper, we explore the possibility that intelligent control of BGP routes, coupled with ISP multihoming, can provide competitive end-to-end performance and reliability. Using extensive measurements of paths between nodes in a large content distribution network, we compare the relative benefits of overlay routing and multihoming route control in terms of round-trip latency, TCP connection throughput, and path availability. We observe that the performance achieved by route control together with multihoming to three ISPs (3-multihoming), is within 5-15 % of overlay routing employed in conjunction 3-multihoming, in terms of both endto-end RTT and throughput. We also show that while multihoming cannot offer the nearly perfect resilience of overlays, it can eliminate almost all failures experienced by a singly-homed endnetwork. Our results demonstrate that, by leveraging the capability of multihoming route control, it is not necessary to circumvent BGP routing to extract good wide-area performance and availability from the existing routing system.
ROFL: Routing on Flat Labels.
, 2006
"... ABSTRACT It is accepted wisdom that the current Internet architecture conflates network locations and host identities, but there is no agreement on how a future architecture should distinguish the two. One could sidestep this quandary by routing directly on host identities themselves, and eliminati ..."
Abstract
-
Cited by 105 (5 self)
- Add to MetaCart
(Show Context)
ABSTRACT It is accepted wisdom that the current Internet architecture conflates network locations and host identities, but there is no agreement on how a future architecture should distinguish the two. One could sidestep this quandary by routing directly on host identities themselves, and eliminating the need for network-layer protocols to include any mention of network location. The key to achieving this is the ability to route on flat labels. In this paper we take an initial stab at this challenge, proposing and analyzing our ROFL routing algorithm. While its scaling and efficiency properties are far from ideal, our results suggest that the idea of routing on flat labels cannot be immediately dismissed.
Overcoming the internet impasse through virtualization
- in Proceedings of the 3rd ACM Workshop on Hot Topics in Networks (HotNets-III
, 2004
"... Abstract: The current Internet is at an impasse because new architectures cannot be deployed, or even adequately evaluated. This paper urges the community to confront this impasse, and suggests a way virtualization might be used to overcome it. In the process, we discuss the nature of architecture a ..."
Abstract
-
Cited by 90 (4 self)
- Add to MetaCart
(Show Context)
Abstract: The current Internet is at an impasse because new architectures cannot be deployed, or even adequately evaluated. This paper urges the community to confront this impasse, and suggests a way virtualization might be used to overcome it. In the process, we discuss the nature of architecture and the debate between purists and pluralists. 1.
NIRA: A New Inter-Domain Routing Architecture
- IEEE/ACM TRANSACTIONS ON NETWORKING
, 2007
"... In today’s Internet, users can choose their local Internet service providers (ISPs), but once their packets have entered the network, they have little control over the overall routes their packets take. Giving a user the ability to choose between provider-level routes has the potential of fostering ..."
Abstract
-
Cited by 77 (2 self)
- Add to MetaCart
(Show Context)
In today’s Internet, users can choose their local Internet service providers (ISPs), but once their packets have entered the network, they have little control over the overall routes their packets take. Giving a user the ability to choose between provider-level routes has the potential of fostering ISP competition to offer enhanced service and improving end-to-end performance and reliability. This paper presents the design and evaluation of a new Internet routing architecture (NIRA) that gives a user the ability to choose the sequence of providers his packets take. NIRA addresses a broad range of issues, including practical provider compensation, scalable route discovery, efficient route representation, fast route fail-over, and security. NIRA supports user choice without running a global link-state routing protocol. It breaks an end-to-end route into a sender part and a receiver part and uses address assignment to represent each part. A user can specify a route with only a source and a destination address, and switch routes by switching addresses. We evaluate NIRA using a combination of network measurement, simulation, and analysis. Our evaluation shows that NIRA supports user choice with low overhead.