Results 1 - 10
of
599
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract
-
Cited by 770 (3 self)
- Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
MonoSLAM: Realtime single camera SLAM
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2007
"... Abstract—We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the “pure vision ” domain of ..."
Abstract
-
Cited by 490 (26 self)
- Add to MetaCart
(Show Context)
Abstract—We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the “pure vision ” domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to Structure from Motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera. Index Terms—Autonomous vehicles, 3D/stereo scene analysis, tracking. Ç 1
Robotic mapping: A survey
- EXPLORING ARTIFICIAL INTELLIGENCE IN THE NEW MILLENIUM
, 2002
"... This article provides a comprehensive introduction into the field of robotic mapping, with a focus on indoor mapping. It describes and compares various probabilistic techniques, as they are presently being applied to a vast array of mobile robot mapping problems. The history of robotic mapping is al ..."
Abstract
-
Cited by 369 (6 self)
- Add to MetaCart
(Show Context)
This article provides a comprehensive introduction into the field of robotic mapping, with a focus on indoor mapping. It describes and compares various probabilistic techniques, as they are presently being applied to a vast array of mobile robot mapping problems. The history of robotic mapping is also described, along with an extensive list of open research problems.
Learning and inferring transportation routines
, 2004
"... This paper introduces a hierarchical Markov model that can learn and infer a user’s daily movements through the community. The model uses multiple levels of abstraction in order to bridge the gap between raw GPS sensor measurements and high level information such as a user’s mode of transportation ..."
Abstract
-
Cited by 312 (22 self)
- Add to MetaCart
This paper introduces a hierarchical Markov model that can learn and infer a user’s daily movements through the community. The model uses multiple levels of abstraction in order to bridge the gap between raw GPS sensor measurements and high level information such as a user’s mode of transportation or her goal. We apply Rao-Blackwellised particle filters for efficient inference both at the low level and at the higher levels of the hierarchy. Significant locations such as goals or locations where the user frequently changes mode of transportation are learned from GPS data logs without requiring any manual labeling. We show how to detect abnormal behaviors (e.g. taking a wrong bus) by concurrently tracking his activities with a trained and a prior model. Experiments show that our model is able to accurately predict the goals of a person and to recognize situations in which the user performs unknown activities.
FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges
"... In [15], Montemerlo et al. proposed an algorithm called FastSLAM as an efficient and robust solution to the simultaneous localization and mapping problem. This paper describes a modified version of FastSLAM that overcomes important deficiencies of the original algorithm. We prove convergence of this ..."
Abstract
-
Cited by 225 (7 self)
- Add to MetaCart
(Show Context)
In [15], Montemerlo et al. proposed an algorithm called FastSLAM as an efficient and robust solution to the simultaneous localization and mapping problem. This paper describes a modified version of FastSLAM that overcomes important deficiencies of the original algorithm. We prove convergence of this new algorithm for linear SLAM problems and provide real-world experimental results that illustrate an order of magnitude improvement in accuracy over the original FastSLAM algorithm. 1
Unified inverse depth parametrization for monocular slam
- In Proceedings of Robotics: Science and Systems
, 2006
"... Abstract—We present a new parametrization for point features within monocular simultaneous localization and mapping (SLAM) that permits efficient and accurate representation of uncertainty during undelayed initialization and beyond, all within the standard extended Kalman filter (EKF). The key conce ..."
Abstract
-
Cited by 197 (19 self)
- Add to MetaCart
(Show Context)
Abstract—We present a new parametrization for point features within monocular simultaneous localization and mapping (SLAM) that permits efficient and accurate representation of uncertainty during undelayed initialization and beyond, all within the standard extended Kalman filter (EKF). The key concept is direct parametrization of the inverse depth of features relative to the camera locations from which they were first viewed, which produces measurement equations with a high degree of
Improved techniques for grid mapping with rao-blackwellized particle filters
- IEEE Transactions on Robotics
, 2007
"... Abstract — Recently, Rao-Blackwellized particle filters have been introduced as an effective means to solve the simultaneous localization and mapping problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is how ..."
Abstract
-
Cited by 179 (20 self)
- Add to MetaCart
(Show Context)
Abstract — Recently, Rao-Blackwellized particle filters have been introduced as an effective means to solve the simultaneous localization and mapping problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is how to reduce the number of particles. In this paper, we present adaptive techniques for reducing this number in a Rao-Blackwellized particle filter for learning grid maps. We propose an approach to compute an accurate proposal distribution taking into account not only the movement of the robot but also the most recent observation. This drastically decreases the uncertainty about the robot’s pose in the prediction step of the filter. Furthermore, we present an approach to selectively carry out resampling operations which seriously reduces the problem of particle depletion. Experimental results carried out with real mobile robots in large-scale indoor as well as in outdoor environments illustrate the advantages of our methods over previous approaches. Index Terms — SLAM, Rao-Blackwellized particle filter, adaptive resampling, motion-model, improved proposal
An Atlas Framework for Scalable Mapping
- in IEEE International Conference on Robotics and Automation
, 2003
"... This paper describes Atlas, a hybrid metrical /topological approach to SLAM that achieves efficient mapping of large-scale environments. The representation is a graph of coordinate frames, with each vertex in the graph representing a local frame, and each edge representing the transformation between ..."
Abstract
-
Cited by 178 (19 self)
- Add to MetaCart
(Show Context)
This paper describes Atlas, a hybrid metrical /topological approach to SLAM that achieves efficient mapping of large-scale environments. The representation is a graph of coordinate frames, with each vertex in the graph representing a local frame, and each edge representing the transformation between adjacent frames. In each frame, we build a map that captures the local environment and the current robot pose along with the uncertainties of each. Each map's uncertainties are modeled with respect to its own frame. Probabilities of entities with respect to arbitrary frames are generated by following a path formed by the edges between adjacent frames, computed via Dijkstra's shortest path algorithm. Loop closing is achieved via an efficient map matching algorithm. We demonstrate the technique running in real-time in a large indoor structured environment (2.2 km path length) with multiple nested loops using laser or ultrasonic ranging sensors.
Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling
- In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA
, 2005
"... Abstract — Recently Rao-Blackwellized particle filters have been introduced as effective means to solve the simultaneous localization and mapping (SLAM) problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is h ..."
Abstract
-
Cited by 152 (22 self)
- Add to MetaCart
(Show Context)
Abstract — Recently Rao-Blackwellized particle filters have been introduced as effective means to solve the simultaneous localization and mapping (SLAM) problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is how to reduce the number of particles. In this paper we present adaptive techniques to reduce the number of particles in a Rao-Blackwellized particle filter for learning grid maps. We propose an approach to compute an accurate proposal distribution taking into account not only the movement of the robot but also the most recent observation. This drastically decrease the uncertainty about the robot’s pose in the prediction step of the filter. Furthermore, we present an approach to selectively carry out re-sampling operations which seriously reduces the problem of particle depletion. Experimental results carried out with mobile robots in large-scale indoor as well as in outdoor environments illustrate the advantages of our methods over previous approaches. I.