Results 1  10
of
423
Geodesic Active Contours
, 1997
"... A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both in ..."
Abstract

Cited by 1425 (47 self)
 Add to MetaCart
(Show Context)
A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image content. This geodesic approach for object segmentation allows to connect classical “snakes ” based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved, allowing stable boundary detection when their gradients suffer from large variations, including gaps. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. The scheme was implemented using an efficient algorithm for curve evolution. Experimental results of applying the scheme to real images including objects with holes and medical data imagery demonstrate its power. The results may be extended to 3D object segmentation as well.
Shape modeling with front propagation: A level set approach
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1995
"... Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods and over ..."
Abstract

Cited by 808 (20 self)
 Add to MetaCart
Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods and overcomes some of their limitations. Our techniques can be applied to model arbitrarily complex shapes, which include shapes with significant protrusions, and to situations where no a priori assumption about the object’s topology is made. A single instance of our model, when presented with an image having more than one object of interest, has the ability to split freely to represent each object. This method is based on the ideas developed by Osher and Sethian to model propagating solidhiquid interfaces with curvaturedependent speeds. The interface (front) is a closed, nonintersecting, hypersurface flowing along its gradient field with constant speed or a speed that depends on the curvature. It is moved by solving a “HamiltonJacob? ’ type equation written for a function in which the interface is a particular level set. A speed term synthesizpd from the image is used to stop the interface in the vicinity of object boundaries. The resulting equation of motion is solved by employing entropysatisfying upwind finite difference schemes. We present a variety of ways of computing evolving front, including narrow bands, reinitializations, and different stopping criteria. The efficacy of the scheme is demonstrated with numerical experiments on some synthesized images and some low contrast medical images.
A Fast Marching Level Set Method for Monotonically Advancing Fronts
 PROC. NAT. ACAD. SCI
, 1995
"... We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential eq ..."
Abstract

Cited by 630 (24 self)
 Add to MetaCart
(Show Context)
We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential equation for a propagating level set function, and use techniques borrowed from hyperbolic conservation laws. Topological changes, corner and cusp development, and accurate determination of geometric properties such as curvature and normal direction are naturally obtained in this setting. In this paper, we describe a particular case of such methods for interfaces whose speed depends only on local position. The technique works by coupling work on entropy conditions for interface motion, the theory of viscosity solutions for HamiltonJacobi equations and fast adaptive narrow band level set methods. The technique is applicable to a variety of problems, including shapefromshading problems, lithog...
Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 2002
"... This paper presents a novel variational framework to deal with frame partition problems in Computer Vision. This framework exploits boundary and regionbased segmentation modules under a curvebased optimization objective function. The task of supervised texture segmentation is considered to demonst ..."
Abstract

Cited by 312 (9 self)
 Add to MetaCart
This paper presents a novel variational framework to deal with frame partition problems in Computer Vision. This framework exploits boundary and regionbased segmentation modules under a curvebased optimization objective function. The task of supervised texture segmentation is considered to demonstrate the potentials of the proposed framework. The textured feature space is generated by filtering the given textured images using isotropic and anisotropic filters, and analyzing their responses as multicomponent conditional probability density functions. The texture segmentation is obtained by unifying region and boundarybased information as an improved Geodesic Active Contour Model. The defined objective function is minimized using a gradientdescent method where a level set approach is used to implement the obtained PDE. According to this PDE, the curve propagation towards the final solution is guided by boundary and regionbased segmentation forces, and is constrained by a regularity force. The level set implementation is performed using a fast front propagation algorithm where topological changes are naturally handled. The performance of our method is demonstrated on a variety of synthetic and real textured frames.
Computing Geodesic Paths on Manifolds
 Proc. Natl. Acad. Sci. USA
, 1998
"... The Fast Marching Method [8] is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. In this paper we extend the Fast Marching Method to triangulated domains with the same computational complexity. A ..."
Abstract

Cited by 294 (28 self)
 Add to MetaCart
(Show Context)
The Fast Marching Method [8] is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. In this paper we extend the Fast Marching Method to triangulated domains with the same computational complexity. As an application, we provide an optimal time algorithm for computing the geodesic distances and thereby extracting shortest paths on triangulated manifolds. 1 Introduction Sethian`s Fast Marching Method [8], is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M ) steps, where M is the total number of grid points in the domain. The technique hinges on producing numerically consistent approximations to the operators in the Eikonal equation that select the correct viscosity solution; this is done through the use of upwind nite dierence operators. The structure of this upwinding is then used to systematically construct the solution to the Eik...
Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... ..."
(Show Context)
A PDEBased Fast Local Level Set Method
 Journal of Computational Physics
, 1999
"... this paper we localize the level set method. Our localization works in as much generality as does the original method and all of its recent variants [27, 28], but requires an order of magnitude less computing effort. Earlier work on localization was done by Adalsteinsson and Sethian [1]. Our approac ..."
Abstract

Cited by 266 (26 self)
 Add to MetaCart
this paper we localize the level set method. Our localization works in as much generality as does the original method and all of its recent variants [27, 28], but requires an order of magnitude less computing effort. Earlier work on localization was done by Adalsteinsson and Sethian [1]. Our approach differs from theirs in that we use only the values of the level set function (or functions, for multiphase flow) and not the explicit location of points in the domain. Our implementation is easy and straightforward and has been used in [9, 14, 27, 28]. Our approach is partial differential equation (PDE) based, in the sense that our localization, extension, and reinitialization are all based on solving different PDEs. This leads to a simple, accurate, and flexible method. Equations (10) and (11) of Section 2 enable us to update the level set function (or functions in the multiphase case) without any stability problems at the boundary of the tube used to localize the evolution. Such equations are new and do not appear in [1]. In fact, the technique used in [1] has boundary stability problems because Eq. (2) or (3) (the evolution equation of the level set function) is solved right up to this boundary. In contrast, in our method, the speed of evolution degenerates smoothly to 0 at this boundary. This is achieved by modifying the evolution of the level set function near the tube boundary but away from the interface. This modification effectively eliminates the boundary stability issues in [1] and has no impact on the correct evolution of the interface. The reinitialization step will reset the level set function to be a signed distance function to the front. There are no boundary issues in our distance reinitialization or extension of velocity field off the interface. Both of the...
Global Minimum for Active Contour Models: A Minimal Path Approach
, 1997
"... A new boundary detection approach for shape modeling is presented. It detects the global minimum of an active contour model’s energy between two end points. Initialization is made easier and the curve is not trapped at a local minimum by spurious edges. We modify the “snake” energy by including the ..."
Abstract

Cited by 238 (70 self)
 Add to MetaCart
(Show Context)
A new boundary detection approach for shape modeling is presented. It detects the global minimum of an active contour model’s energy between two end points. Initialization is made easier and the curve is not trapped at a local minimum by spurious edges. We modify the “snake” energy by including the internal regularization term in the external potential term. Our method is based on finding a path of minimal length in a Riemannian metric. We then make use of a new efficient numerical method to find this shortest path. It is shown that the proposed energy, though based only on a potential integrated along the curve, imposes a regularization effect like snakes. We explore the relation between the maximum curvature along the resulting contour and the potential generated from the image. The method is capable to close contours, given only one point on the objects’ boundary by using a topologybased saddle search routine. We show examples of our method applied to real aerial and medical images.
Level set methods: An overview and some recent results
 J. Comput. Phys
, 2001
"... The level set method was devised by Osher and Sethian in [64] as a simple and versatile method for computing and analyzing the motion of an interface Γ in two or three dimensions. Γ bounds a (possibly multiply connected) region Ω. The goal is to compute and analyze the subsequent motion of Γ under a ..."
Abstract

Cited by 226 (11 self)
 Add to MetaCart
(Show Context)
The level set method was devised by Osher and Sethian in [64] as a simple and versatile method for computing and analyzing the motion of an interface Γ in two or three dimensions. Γ bounds a (possibly multiply connected) region Ω. The goal is to compute and analyze the subsequent motion of Γ under a velocity field �v. This velocity can depend on position, time, the geometry of the interface and the external physics. The interface is captured for later time as the zero level set of a smooth (at least Lipschitz continuous) function ϕ(�x,t), i.e., Γ(t)={�xϕ(�x,t)=0}. ϕ is positive inside Ω, negative outside Ω andiszeroonΓ(t). Topological merging and breaking are well defined and easily performed. In this review article we discuss recent variants and extensions, including the motion of curves in three dimensions, the Dynamic Surface Extension method, fast methods for steady state problems, diffusion generated motion and the variational level set approach. We also give a user’s guide to the level set dictionary and technology, couple the method to a wide variety of problems involving external physics, such as compressible and incompressible (possibly reacting) flow, Stefan problems, kinetic crystal growth, epitaxial growth of thin films,
The Fast Construction of Extension Velocities in Level Set Methods
 Journal of Computational Physics
, 1997
"... Level set techniques are numerical techniques for tracking the evolution of interfaces. They rely on two central embeddings; rst the embedding of the interface as the zero level set of a higher dimensional function, and second, the embedding (or extension) of the interface's velocity to this hi ..."
Abstract

Cited by 218 (12 self)
 Add to MetaCart
(Show Context)
Level set techniques are numerical techniques for tracking the evolution of interfaces. They rely on two central embeddings; rst the embedding of the interface as the zero level set of a higher dimensional function, and second, the embedding (or extension) of the interface's velocity to this higher dimensional level set function. This paper applies Sethian's Fast Marching Method, which is a very fast technique for solving the Eikonal and related equations, to the problem of building fast and appropriate extension velocities for the neighboring level sets. Our choice and construction of extension velocities serves several purposes. First, it provides a way of building velocities for neighboring level sets in the cases where the velocity is de ned only on the front itself. Second, it provides a subgrid resolution in some cases not present in the standard level set approach. Third, it provides a way to update an interface according to a given velocity eld prescribed on the front in suc...