• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

The Nature of Statistical Learning Theory (1995)

by V Vapnik
Add To MetaCart

Tools

Sorted by:
Results 1 - 10 of 13,233
Next 10 →

Convex Optimization

by Stephen Boyd, Lieven Vandenberghe , 2004
"... ..."
Abstract - Cited by 7468 (151 self) - Add to MetaCart
Abstract not found

LIBSVM: A library for support vector machines,”

by Chih-Chung Chang , Chih-Jen Lin - ACM Transactions on Intelligent Systems and Technology, , 2011
"... Abstract LIBSVM is a library for support vector machines (SVM). Its goal is to help users to easily use SVM as a tool. In this document, we present all its implementation details. For the use of LIBSVM, the README file included in the package and the LIBSVM FAQ provide the information. ..."
Abstract - Cited by 6496 (83 self) - Add to MetaCart
Abstract LIBSVM is a library for support vector machines (SVM). Its goal is to help users to easily use SVM as a tool. In this document, we present all its implementation details. For the use of LIBSVM, the README file included in the package and the LIBSVM FAQ provide the information.

A tutorial on support vector machines for pattern recognition

by Christopher J. C. Burges - Data Mining and Knowledge Discovery , 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract - Cited by 3393 (12 self) - Add to MetaCart
The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.
(Show Context)

Citation Context

..., VC Dimension, Pattern Recognition 1. Introduction The purpose of this paper is to provide an introductory yet extensive tutorial on the basic ideas behind Support Vector Machines (SVMs). The books (=-=Vapnik, 1995-=-; Vapnik, 1998) contain excellent descriptions of SVMs, but they leave room for an account whose purpose from the start is to teach. Although the subject can be said to have started in the late sevent...

Online Learning with Kernels

by Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson , 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the so-called kernel trick with the large margin idea. There has been little u ..."
Abstract - Cited by 2831 (123 self) - Add to MetaCart
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the so-called kernel trick with the large margin idea. There has been little use of these methods in an online setting suitable for real-time applications. In this paper we consider online learning in a Reproducing Kernel Hilbert Space. By considering classical stochastic gradient descent within a feature space, and the use of some straightforward tricks, we develop simple and computationally efficient algorithms for a wide range of problems such as classification, regression, and novelty detection. In addition to allowing the exploitation of the kernel trick in an online setting, we examine the value of large margins for classification in the online setting with a drifting target. We derive worst case loss bounds and moreover we show the convergence of the hypothesis to the minimiser of the regularised risk functional. We present some experimental results that support the theory as well as illustrating the power of the new algorithms for online novelty detection. In addition

Information Theory, Inference, and Learning Algorithms

by David J. C. MacKay , 2003
"... ..."
Abstract - Cited by 1936 (13 self) - Add to MetaCart
Abstract not found

Making Large-Scale SVM Learning Practical

by Thorsten Joachims , 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract - Cited by 1861 (17 self) - Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large learning tasks with many training examples, off-the-shelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements. SV M light1 is an implementation of an SVM learner which addresses the problem of large tasks. This chapter presents algorithmic and computational results developed for SV M light V2.0, which make large-scale SVM training more practical. The results give guidelines for the application of SVMs to large domains.

An Introduction to Information Retrieval

by Christopher D. Manning, et al. , 2007
"... ..."
Abstract - Cited by 1857 (13 self) - Add to MetaCart
Abstract not found

Content-based image retrieval at the end of the early years

by Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, Ramesh Jain - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2000
"... The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for imag ..."
Abstract - Cited by 1618 (24 self) - Add to MetaCart
The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

Nonlinear component analysis as a kernel eigenvalue problem

by Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller - , 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract - Cited by 1573 (83 self) - Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible 5-pixel products in 16x16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.
(Show Context)

Citation Context

...yon, & Vapnik, 1992). Even though this general fact was known (Burges, private communication), the machine learning community has made 1 little use of it, the exception being Support Vector machines (=-=Vapnik, 1995-=-). In this paper, we give an example of applying this method in the domain of unsupervised learning, to obtain a nonlinear form of PCA. In the next section, we will first review the standard PCA algor...

Gradient-based learning applied to document recognition

by Yann Lecun, Léon Bottou, Yoshua Bengio, Patrick Haffner - Proceedings of the IEEE , 1998
"... Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify hi ..."
Abstract - Cited by 1533 (84 self) - Add to MetaCart
Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of two dimensional (2-D) shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation, recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN’s), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank check is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal checks. It is deployed commercially and reads several million checks per day.
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University