Results 1 - 10
of
378
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
- IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, 2005
"... This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes vario ..."
Abstract
-
Cited by 1490 (23 self)
- Add to MetaCart
(Show Context)
This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes various limitations of current recommendation methods and discusses possible extensions that can improve recommendation capabilities and make recommender systems applicable to an even broader range of applications. These extensions include, among others, an improvement of understanding of users and items, incorporation of the contextual information into the recommendation process, support for multcriteria ratings, and a provision of more flexible and less intrusive types of recommendations.
Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach
- ACM Transactions on Information Systems
, 2005
"... The paper presents a multidimensional (MD) approach to recommender systems that can provide recommendations based on additional contextual information besides the typical information on users and items used in most of the current recommender systems. This approach supports multiple dimensions, exten ..."
Abstract
-
Cited by 236 (9 self)
- Add to MetaCart
(Show Context)
The paper presents a multidimensional (MD) approach to recommender systems that can provide recommendations based on additional contextual information besides the typical information on users and items used in most of the current recommender systems. This approach supports multiple dimensions, extensive profiling, and hierarchical aggregation of recommendations. The paper also presents a multidimensional rating estimation method capable of selecting two-dimensional segments of ratings pertinent to the recommendation context and applying standard collaborative filtering or other traditional two-dimensional rating estimation techniques to these segments. A comparison of the multidimensional and two-dimensional rating estimation approaches is made, and the tradeoffs between the two are studied. Moreover, the paper introduces a combined rating estimation method that identifies the situations where the MD approach outperforms the standard two-dimensional approach and uses the MD approach in those situations and the standard two-dimensional approach elsewhere. Finally, the paper presents a pilot empirical study of the combined approach, using a multidimensional movie recommender system that was developed for implementing this approach and testing its performance. 1 1.
A Survey of Collaborative Filtering Techniques
, 2009
"... As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenge ..."
Abstract
-
Cited by 216 (0 self)
- Add to MetaCart
As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenges, such as data sparsity, scalability, synonymy, gray sheep, shilling attacks, privacy protection, etc., and their possible solutions. We then present three main categories of CF techniques: memory-based, model-based, and hybrid CF algorithms (that combine CF with other recommendation techniques), with examples for representative algorithms of each category, and analysis of their predictive performance and their ability to address the challenges. From basic techniques to the state-of-the-art, we attempt to present a comprehensive survey for CF techniques, which can be served as a roadmap for research and practice in this area.
Weighted low-rank approximations.
- In Int. Conf. Machine Learning (ICML),
, 2003
"... Abstract We study the common problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low-rank approximation problems, which, unlike their unweighted version, do not admit a closedform solution in general. We analyze ..."
Abstract
-
Cited by 198 (10 self)
- Add to MetaCart
(Show Context)
Abstract We study the common problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low-rank approximation problems, which, unlike their unweighted version, do not admit a closedform solution in general. We analyze, in addition, the nature of locally optimal solutions that arise in this context, demonstrate the utility of accommodating the weights in reconstructing the underlying low-rank representation, and extend the formulation to nonGaussian noise models such as logistic models. Finally, we apply the methods developed to a collaborative filtering task.
An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
, 2009
"... ..."
(Show Context)
Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights
- IEEE International Conference on Data Mining (ICDM
, 2007
"... Recommender systems based on collaborative filtering predict user preferences for products or services by learning past user-item relationships. A predominant approach to collaborative filtering is neighborhood based (“k-nearest neighbors”), where a user-item preference rating is interpolated from r ..."
Abstract
-
Cited by 153 (11 self)
- Add to MetaCart
(Show Context)
Recommender systems based on collaborative filtering predict user preferences for products or services by learning past user-item relationships. A predominant approach to collaborative filtering is neighborhood based (“k-nearest neighbors”), where a user-item preference rating is interpolated from ratings of similar items and/or users. We enhance the neighborhood-based approach leading to substantial improvement of prediction accuracy, without a meaningful increase in running time. First, we remove certain so-called “global effects ” from the data to make the ratings more comparable, thereby improving interpolation accuracy. Second, we show how to simultaneously derive interpolation weights for all nearest neighbors, unlike previous approaches where each weight is computed separately. By globally solving a suitable optimization problem, this simultaneous interpolation accounts for the many interactions between neighbors leading to improved accuracy. Our method is very fast in practice, generating a prediction in about 0.2 milliseconds. Importantly, it does not require training many parameters or a lengthy preprocessing, making it very practical for large scale applications. Finally, we show how to apply these methods to the perceivably much slower user-oriented approach. To this end, we suggest a novel scheme for low dimensional embedding of the users. We evaluate these methods on the Netflix dataset, where they deliver significantly better results than the commercial Netflix Cinematch recommender system. 1
Getting to Know You: Learning New User Preferences in Recommender Systems
, 2002
"... Recommender systems have become valuable resources for users seeking intelligent ways to search through the enormous volume of information available to them. One crucial unsolved problem for recommender systems is how best to learn about a new user. In this paper we study six techniques that collabo ..."
Abstract
-
Cited by 145 (12 self)
- Add to MetaCart
Recommender systems have become valuable resources for users seeking intelligent ways to search through the enormous volume of information available to them. One crucial unsolved problem for recommender systems is how best to learn about a new user. In this paper we study six techniques that collaborative filtering recommender systems can use to learn about new users. These techniques select a sequence of items for the collaborative filtering system to present to each new user for rating. The techniques include the use of information theory to select the items that will give the most value to the recommender system, aggregate statistics to select the items the user is most likely to have an opinion about, balanced techniques that seek to maximize the expected number of bits learned per presented item, and personalized techniques that predict which items a user will have an opinion about. We study the techniques thru offline experiments with a large preexisting user data set, and thru a live experiment with over 300 users. We show that the choice of learning technique significantly affects the user experience, in both the user effort and the accuracy of the resulting predictions.
Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering
- ACM Transactions on Information Systems
, 2004
"... this article, we propose to deal with this sparsity problem by applying an associative retrieval framework and related spreading activation algorithms to explore transitive associations among consumers through their past transactions and feedback. Such transitive associations are a valuable source o ..."
Abstract
-
Cited by 135 (12 self)
- Add to MetaCart
this article, we propose to deal with this sparsity problem by applying an associative retrieval framework and related spreading activation algorithms to explore transitive associations among consumers through their past transactions and feedback. Such transitive associations are a valuable source of information to help infer consumer interests and can be explored to deal with the sparsity problem. To evaluate the effectiveness of our approach, we have conducted an experimental study using a data set from an online bookstore. We experimented with three spreading activation algorithms including a constrained Leaky Capacitor algorithm, a branch-and-bound serial symbolic search algorithm, and a Hopfield net parallel relaxation search algorithm. These algorithms were compared with several collaborative filtering approaches that do not consider the transitive associations: a simple graph search approach, two variations of the user-based approach, and an item-based approach. Our experimental results indicate that spreading activation-based approaches significantly outperformed the other collaborative filtering methods as measured by recommendation precision, recall, the F-measure, and the rank score. We also observed the over-activation effect of the spreading activation approach, that is, incorporating transitive associations with past transactional data that is not sparse may "dilute" the data used to infer user preferences and lead to degradation in recommendation performance
PolyLens: A recommender system for groups of users
- In Proceedings of the European Conference on Computer-Supported Cooperative Work
, 2001
"... Abstract. We present PolyLens, a new collaborative filtering recommender system designed to recommend items for groups of users, rather than for individuals. A group recommender is more appropriate and useful for domains in which several people participate in a single activity, as is often the case ..."
Abstract
-
Cited by 126 (4 self)
- Add to MetaCart
(Show Context)
Abstract. We present PolyLens, a new collaborative filtering recommender system designed to recommend items for groups of users, rather than for individuals. A group recommender is more appropriate and useful for domains in which several people participate in a single activity, as is often the case with movies and restaurants. We present an analysis of the primary design issues for group recommenders, including questions about the nature of groups, the rights of group members, social value functions for groups, and interfaces for displaying group recommendations. We then report on our PolyLens prototype and the lessons we learned from usage logs and surveys from a nine-month trial that included 819 users. We found that users not only valued group recommendations, but were willing to yield some privacy to get the benefits of group recommendations. Users valued an extension to the group recommender system that enabled them to invite non-members to participate, via email.
Unifying user-based and item-based collaborative filtering approaches by similarity fusion
- In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval
, 2006
"... Memory-based methods for collaborative filtering predict new ratings by averaging (weighted) ratings between, respectively, pairs of similar users or items. In practice, a large number of ratings from similar users or similar items are not available, due to the sparsity inherent to rating data. Cons ..."
Abstract
-
Cited by 115 (11 self)
- Add to MetaCart
(Show Context)
Memory-based methods for collaborative filtering predict new ratings by averaging (weighted) ratings between, respectively, pairs of similar users or items. In practice, a large number of ratings from similar users or similar items are not available, due to the sparsity inherent to rating data. Consequently, prediction quality can be poor. This paper reformulates the memory-based collaborative filtering problem in a generative probabilistic framework, treating individual user-item ratings as predictors of missing ratings. The final rating is estimated by fusing predictions from three sources: predictions based on ratings of the same item by other users, predictions based on different item ratings made by the same user, and, third, ratings predicted based on data from other but similar users rating other but similar items. Existing user-based and item-based approaches correspond to the two simple cases of our framework. The complete model is however more robust to data sparsity, because the different types of ratings are used in concert, while additional ratings from similar users towards similar items are employed as a background model to smooth the predictions. Experiments demonstrate that the proposed methods are indeed more robust against data sparsity and give better recommendations.