Results 1 - 10
of
774
Geodesic Active Contours
, 1997
"... A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both in ..."
Abstract
-
Cited by 1425 (47 self)
- Add to MetaCart
(Show Context)
A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image content. This geodesic approach for object segmentation allows to connect classical “snakes ” based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved, allowing stable boundary detection when their gradients suffer from large variations, including gaps. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. The scheme was implemented using an efficient algorithm for curve evolution. Experimental results of applying the scheme to real images including objects with holes and medical data imagery demonstrate its power. The results may be extended to 3D object segmentation as well.
Active Contours without Edges
, 2001
"... In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford--Shah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy ..."
Abstract
-
Cited by 1206 (38 self)
- Add to MetaCart
In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford--Shah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We will give a numerical algorithm using finite differences. Finally, we will present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images
, 2001
"... In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph ..."
Abstract
-
Cited by 1010 (20 self)
- Add to MetaCart
In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both “object” and “background” segments may consist of several isolated parts. Some experimental results are presented in the context of photo/video editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new max-flow algorithm in [2].
Object Tracking: A Survey
, 2006
"... The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns o ..."
Abstract
-
Cited by 701 (7 self)
- Add to MetaCart
The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model
- INTERNATIONAL JOURNAL OF COMPUTER VISION
, 2002
"... We propose a new multiphase level set framework for image segmentation using the Mumford and Shah model, for piecewise constant and piecewise smooth optimal approximations. The proposed method is also a generalization of an active contour model without edges based 2-phase segmentation, developed by ..."
Abstract
-
Cited by 498 (22 self)
- Add to MetaCart
We propose a new multiphase level set framework for image segmentation using the Mumford and Shah model, for piecewise constant and piecewise smooth optimal approximations. The proposed method is also a generalization of an active contour model without edges based 2-phase segmentation, developed by the authors earlier in T. Chan and L. Vese (1999. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, pp. 141--151) and T. Chan and L. Vese (2001. IEEE-IP, 10(2):266--277). The multiphase level set formulation is new and of interest on its own: by construction, it automatically avoids the problems of vacuum and overlap; it needs only log n level set functions for n phases in the piecewise constant case; it can represent boundaries with complex topologies, including triple junctions; in the piecewise smooth case, only two level set functions formally suffice to represent any partition, based on The Four-Color Theorem. Finally, we validate the proposed models by numerical results for signal and image denoising and segmentation, implemented using the Osher and Sethian level set method.
Image retrieval: ideas, influences, and trends of the new age
- ACM COMPUTING SURVEYS
, 2008
"... We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger ass ..."
Abstract
-
Cited by 485 (13 self)
- Add to MetaCart
(Show Context)
We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.
Unsupervised Segmentation of Color-Texture Regions in Images and Video
, 2001
"... A new method for unsupervised segmentation of color-texture regions in images and video is presented. This method, which we refer to as JSEG, consists of two independent steps: color quantization and spatial segmentation. In the first step, colors in the image are quantized to several representative ..."
Abstract
-
Cited by 318 (3 self)
- Add to MetaCart
A new method for unsupervised segmentation of color-texture regions in images and video is presented. This method, which we refer to as JSEG, consists of two independent steps: color quantization and spatial segmentation. In the first step, colors in the image are quantized to several representative classes that can be used to differentiate regions in the image. The image pixels are then replaced by their corresponding color class labels, thus forming a class-map of the image. The focus of this work is on spatial segmentation, where a criterion for "good" segmentation using the class-map is proposed. Applying the criterion to local windows in the class-map results in the "Jimage, " in which high and low values correspond to possible boundaries and interiors of colortexture regions. A region growing method is then used to segment the image based on the multiscale J-images. A similar approach is applied to video sequences. An additional region tracking scheme is embedded into the region growing process to achieve consistent segmentation and tracking results, even for scenes with non-rigid object motion. Experiments show the robustness of the JSEG algorithm on real images and video.
Automatic linguistic indexing of pictures by a statistical modeling approach
- PAMI
"... Automatic linguistic indexing of pictures is an important but highly challenging problem for researchers in computer vision and content-based image retrieval. In this paper, we introduce a statistical modeling approach to this problem. Categorized images are used to train a dictionary of hundreds of ..."
Abstract
-
Cited by 300 (25 self)
- Add to MetaCart
(Show Context)
Automatic linguistic indexing of pictures is an important but highly challenging problem for researchers in computer vision and content-based image retrieval. In this paper, we introduce a statistical modeling approach to this problem. Categorized images are used to train a dictionary of hundreds of statistical models each representing a concept. Images of any given concept are regarded as instances of a stochastic process that characterizes the concept. To measure the extent of association between an image and the textual description of a concept, the likelihood of the occurrence of the image based on the characterizing stochastic process is computed. A high likelihood indicates a strong association. In our experimental implementation, we focus on a particular group of stochastic processes, that is, the two-dimensional multiresolution hidden Markov models (2-D MHMMs). We implemented and tested our ALIP (Automatic Linguistic Indexing of Pictures) system on a photographic image database of 600 dierent concepts, each with about 40 training images. The system is evaluated quantitatively using more than 4,600 images outside the training database and compared with a random annotation scheme. Exper-iments have demonstrated the good accuracy of the system and its high potential in linguistic indexing of photographic images. Index Terms { Content-based image retrieval, image classication, hidden Markov model, computer vision, statistical learning, wavelets. 1
Image Segmentation by Data Driven Markov Chain Monte Carlo
, 2001
"... This paper presents a computational paradigm called Data Driven Markov Chain Monte Carlo (DDMCMC) for image segmentation in the Bayesian statistical framework. The paper contributes to image segmentation in three aspects. Firstly, it designs effective and well balanced Markov Chain dynamics to exp ..."
Abstract
-
Cited by 277 (32 self)
- Add to MetaCart
(Show Context)
This paper presents a computational paradigm called Data Driven Markov Chain Monte Carlo (DDMCMC) for image segmentation in the Bayesian statistical framework. The paper contributes to image segmentation in three aspects. Firstly, it designs effective and well balanced Markov Chain dynamics to explore the solution space and makes the split and merge process reversible at a middle level vision formulation. Thus it achieves globally optimal solution independent of initial segmentations. Secondly, instead of computing a single maximum a posteriori solution, it proposes a mathematical principle for computing multiple distinct solutions to incorporates intrinsic ambiguities in image segmentation. A k-adventurers algorithm is proposed for extracting distinct multiple solutions from the Markov chain sequence. Thirdly, it utilizes datadriven (bottom-up) techniques, such as clustering and edge detection, to compute importance proposal probabilities, which eectively drive the Markov chain dynamics and achieve tremendous speedup in comparison to traditional jump-diffusion method[4]. Thus DDMCMC paradigm provides a unifying framework where the role of existing segmentation algorithms, such as, edge detection, clustering, region growing, split-merge, SNAKEs, region competition, are revealed as either realizing Markov chain dynamics or computing importance proposal probabilities. We report some results on color and grey level image segmentation in this paper and refer to a detailed report and a web site for extensive discussion.