Results 1 - 10
of
228
Review of solutions to global warming, air pollution and energy security.
- Geochimica Et Cosmochimica Acta
, 2009
"... This paper reviews and ranks major proposed energy-related solutions to global warming, air pollution mortality, and energy security while considering other impacts of the proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollu ..."
Abstract
-
Cited by 64 (4 self)
- Add to MetaCart
This paper reviews and ranks major proposed energy-related solutions to global warming, air pollution mortality, and energy security while considering other impacts of the proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollution, nuclear proliferation, and undernutrition. Nine electric power sources and two liquid fuel options are considered. The electricity sources include solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology. The liquid fuel options include corn-ethanol (E85) and cellulosic-E85. To place the electric and liquid fuel sources on an equal footing, we examine their comparative abilities to address the problems mentioned by powering new-technology vehicles, including battery-electric vehicles (BEVs), hydrogen fuel cell vehicles (HFCVs), and flex-fuel vehicles run on E85. Twelve combinations of energy source-vehicle type are considered. Upon ranking and weighting each combination with respect to each of 11 impact categories, four clear divisions of ranking, or tiers, emerge. Tier 1 (highest-ranked) includes wind-BEVs and wind-HFCVs. Tier 2 includes CSP-BEVs, geothermal-BEVs, PV-BEVs, tidal-BEVs, and wave-BEVs. Tier 3 includes hydro-BEVs, nuclear-BEVs, and CCS-BEVs. Tier 4 includes corn-and cellulosic-E85. Wind-BEVs ranked first in seven out of 11 categories, including the two most important, mortality and climate damage reduction. Although HFCVs are much less efficient than BEVs, wind-HFCVs are still very clean and were ranked second among all combinations. Tier 2 options provide significant benefits and are recommended. Tier 3 options are less desirable. However, hydroelectricity, which was ranked ahead of coal-CCS and nuclear with respect to climate and health, is an excellent load balancer, thus recommended. The Tier 4 combinations (cellulosic-and corn-E85) were ranked lowest overall and with respect to climate, air pollution, land use, wildlife damage, and chemical waste. Cellulosic-E85 ranked lower than corn-E85 overall, primarily due to its potentially larger land footprint based on new data and its higher upstream air pollution emissions than corn-E85. Whereas cellulosic-E85 may cause the greatest average human mortality, nuclear-BEVs cause the greatest upper-limit mortality risk due to the expansion of plutonium separation and uranium enrichment in nuclear energy facilities worldwide. Wind-BEVs and CSP-BEVs cause the least mortality. The footprint area of wind-BEVs is 2-6 orders of magnitude less than that of any other option. Because of their low footprint and pollution, wind-BEVs cause the least wildlife loss. The largest consumer of water is corn-E85. The smallest are wind-, tidal-, and wave-BEVs. The US could theoretically replace all 2007 onroad vehicles with BEVs powered by 73 000-144 000 5 MW wind turbines, less than the 300 000 airplanes the US produced during World War II, reducing US CO2 by 32.5-32.7% and nearly eliminating 15 000/yr vehicle-related air pollution deaths in 2020. In sum, use of wind, CSP, geothermal, tidal, PV, wave, and hydro to provide electricity for BEVs and HFCVs and, by extension, electricity for the residential, industrial, and commercial sectors, will result in the most benefit among the options considered. The combination of these technologies should be advanced as a solution to global warming, air pollution, and energy security. Coal-CCS and nuclear offer less benefit thus represent an opportunity cost loss, and the biofuel options provide no certain benefit and the greatest negative impacts. (1988, Stanford), a B.A. in Economics (1988, Stanford), an M.S. in Environmental Engineering (1988 Stanford), an M.S. in Atmospheric Sciences (1991, and a PhD in Atmospheric Sciences (1994, UCLA) Mark Z. Jacobson Jacobson is Professor of Civil and Environmental Engineering and Director of the Atmosphere/Energy Program at Stanford University. He has received a B.S. in Civil Engineering Broader context This paper reviews and ranks major proposed energy-related solutions to global warming, air pollution mortality, and energy security while considering impacts of the solutions on water supply, land use, wildlife, resource availability, reliability, thermal pollution, water pollution, nuclear proliferation, and undernutrition. To place electricity and liquid fuel options on an equal footing, twelve combinations of energy sources and vehicle type were considered. The overall rankings of the combinations (from highest to lowest) were (1) wind-powered battery-electric vehicles (BEVs), (2) wind-powered hydrogen fuel cell vehicles, (3) concentrated-solar-powered-BEVs, (4) geothermal-powered-BEVs, (5) tidal-powered-BEVs, (6) solar-photovoltaic-powered-BEVs, Review of solutions to global warming, air pollution, and energy security
Sustainable biochar to mitigate global climate change. Nature Communications, Aug. 10, 2010 Need to cite this story in your essay, paper, or report? Use one of the following formats
- APA DOE/Pacific Northwest National Laboratory
, 2010
"... change ..."
The Regime Complex for Climate Change
- Perspectives on Politics
, 2011
"... design elements of a scientifically sound, economically rational, and politically pragmatic post-2012 international policy architecture for global climate change. It draws upon leading thinkers from academia, private industry, government, and non-governmental organizations from around the world to c ..."
Abstract
-
Cited by 31 (2 self)
- Add to MetaCart
(Show Context)
design elements of a scientifically sound, economically rational, and politically pragmatic post-2012 international policy architecture for global climate change. It draws upon leading thinkers from academia, private industry, government, and non-governmental organizations from around the world to construct a small set of promising policy frameworks and then
Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan
, 2011
"... Abstract. The remote and high elevation regions of central Asia are influenced by black carbon (BC) emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. ..."
Abstract
-
Cited by 23 (4 self)
- Add to MetaCart
Abstract. The remote and high elevation regions of central Asia are influenced by black carbon (BC) emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5-15 W m −2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from Correspondence to: D. L. Mauzerall (mauzeral@princeton.edu) reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.
Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860-2000
, 2011
"... [1] A Mt. Everest ice core spanning 1860-2000 AD and analyzed at high resolution for black carbon (BC) using a Single Particle Soot Photometer (SP2) demonstrates strong seasonality, with peak concentrations during the winterspring, and low concentrations during the summer monsoon season. BC concent ..."
Abstract
-
Cited by 12 (5 self)
- Add to MetaCart
(Show Context)
[1] A Mt. Everest ice core spanning 1860-2000 AD and analyzed at high resolution for black carbon (BC) using a Single Particle Soot Photometer (SP2) demonstrates strong seasonality, with peak concentrations during the winterspring, and low concentrations during the summer monsoon season. BC concentrations from 1975BC concentrations from -2000BC concentrations from relative to 1860BC concentrations from -1975 have increased approximately threefold, indicating that BC from anthropogenic sources is being transported to high elevation regions of the Himalaya. The timing of the increase in BC is consistent with BC emission inventory data from South Asia and the Middle East, however since 1990 the ice core BC record does not indicate continually increasing BC concentrations. The Everest BC and dust records provide information about absorbing impurities that can contribute to glacier melt by reducing the albedo of snow and ice. There is no increasing trend in dust concentrations since 1860, and estimated surface radiative forcing due to BC in snow exceeds that of dust in snow. This suggests that a reduction in BC emissions may be an effective means to reduce the effect of absorbing impurities on snow albedo and melt, which affects Himalayan glaciers and the availability of water resources in major Asian rivers. Citation: Kaspari,
Prospects for future climate change and the reasons for early action: a summary of the 2008 critical review”, The Magazine for Environmental Management
"... Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1–0.2 °C per decade that has resu ..."
Abstract
-
Cited by 8 (2 self)
- Add to MetaCart
Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1–0.2 °C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 °C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5–1 °C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 °C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2–2.5 °C above its 1750 value of approximately 15 °C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modern society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.
2009): “Climate Change and the Energy Challenge: A Pragmatic Approach for I ndia”, Economic & Political Weekly, this issue
"... International Studies. India has been arguing that it (and the rest of the developing world) should incur no expense in controlling emissions that cause climate change. In the face of heightened concerns about rapid climate change, that argument is increasingly losing force – both in the fundamental ..."
Abstract
-
Cited by 8 (4 self)
- Add to MetaCart
International Studies. India has been arguing that it (and the rest of the developing world) should incur no expense in controlling emissions that cause climate change. In the face of heightened concerns about rapid climate change, that argument is increasingly losing force – both in the fundamental arithmetic of climate change, and in the political reality that important western partners will increasingly demand more of India and other developing countries. The Indian government has outlined a broad plan for what could be done, but the plan still lacks a strategy to inform which efforts offer the most leverage on warming emissions and which are most credible. This paper offers a framework for that strategy. It suggests that a large number of options to control warming gases are in India’s own self-interest, and with three case studies it suggests that leverage on emissions could amount to several hundred million tonnes of carbon dioxide annually over the next decade and an even larger quantity by 2030. Anthropogenic (human-caused) emissions of greenhouse gases (GHG), mainly carbon dioxide (CO2), are the main human cause of global climate change (IPCC 2007a). Many analysts and governments are now focused on the goal of limiting the total change in climate to 2°C. Achieving this goal would require, roughly, that global CO2 emissions peak before 2015, followed by a 50 % to 80 % reduction in CO2 emissions below 2000 levels by 2050 (ibid). Given likely global growth trajectories such massive emissions reductions are only possible through the large-scale deployment of low-carbon technologies. 1
2011: Climate, health, agricultural and economic impacts of tighter vehicle-emission standards
- Nature Climate Change
"... Non-CO2 air pollutants from motor vehicles have traditionally been controlled to protect air quality and health, but also affect climate. We use global composition–climate modelling to examine the integrated impacts of adopting stringent European on-road vehicle-emission standards for these pollutan ..."
Abstract
-
Cited by 6 (1 self)
- Add to MetaCart
Non-CO2 air pollutants from motor vehicles have traditionally been controlled to protect air quality and health, but also affect climate. We use global composition–climate modelling to examine the integrated impacts of adopting stringent European on-road vehicle-emission standards for these pollutants in 2015 in many developing countries. Relative to no extra controls, the tight standards lead to annual benefits in 2030 and beyond of 120,000–280,000 avoided premature air pollution-related deaths, 6.1–19.7 million metric tons of avoided ozone-related yield losses of major food crops, $US0.6–2.4 trillion avoided health damage and $US1.1–4.3 billion avoided agricultural damage, and mitigation of 0.20 (+0.14/−0.17) ◦C of Northern Hemisphere extratropical warming during 2040–2070. Tighter vehicle-emission standards are thus extremely likely to mitigate short-term climate change in most cases, in addition to providing large improvements in human health and food security. These standards will not reduce CO2 emissions, however, which is required to mitigate long-term climate change. Fossil-fuel combustion is a major source of pollutants that bothalter climate and degrade air quality1,2. A large and rapidlygrowing source of emissions is from on-road motor vehicles: cars, trucks and motorcycles1,3. Although much is known about how vehicle emissions affect air quality, there have been fewer studies of how vehicle emissions affect climate. Climate projections typically include vehicle emissions in scenarios with simultaneous changes in emissions from multiple sources. Several recent studies
Black Carbon Particulate Matter Emission Factors for Buoyancy Driven Associated Gas Flares
- Journal of the Air & Waste Management Association
, 2011
"... ..."
Estimating global black carbon emissions using a top-down Kalman Filter approach*
"... research with independent policy analysis to provide a solid foundation for the public and private decisions needed to mitigate and adapt to unavoidable global environmental changes. Being data-driven, the Program uses extensive Earth system and economic data and models to produce quantitative analy ..."
Abstract
-
Cited by 4 (0 self)
- Add to MetaCart
research with independent policy analysis to provide a solid foundation for the public and private decisions needed to mitigate and adapt to unavoidable global environmental changes. Being data-driven, the Program uses extensive Earth system and economic data and models to produce quantitative analysis and predictions of the risks of climate change and the challenges of limiting human influence on the environment—essential knowledge for the international dialogue toward a global response to climate change. To this end, the Program brings together an interdisciplinary group from two established MIT research centers: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two centers—along with collaborators from the Marine Biology Laboratory (MBL) at Woods Hole and short- and long-term visitors—provide the united vision needed to solve global challenges. At the heart of much of the Program’s work lies MIT’s Integrated Global System Model. Through this integrated model, the Program seeks to: discover new interactions among natural and human climate system components; objectively assess uncertainty in economic and climate projections; critically and quantitatively analyze environmental management and policy proposals; understand complex