Results 1 - 10
of
404
Wireless Sensor Network Localization Techniques
"... Wireless sensor network localization is an important area that attracted significant research interest. This interest is expected to grow further with the proliferation of wireless sensor network applications. This paper provides an overview of the measurement techniques in sensor network localizat ..."
Abstract
-
Cited by 209 (5 self)
- Add to MetaCart
Wireless sensor network localization is an important area that attracted significant research interest. This interest is expected to grow further with the proliferation of wireless sensor network applications. This paper provides an overview of the measurement techniques in sensor network localization and the one-hop localization algorithms based on these measurements. A detailed investigation on multihop connectivity-based and distance-based localization algorithms are presented. A list of open research problems in the area of distance-based sensor network localization is provided with discussion on possible approaches to them.
Secure positioning of wireless devices with application to sensor networks
- in Proceedings of INFOCOM 2005
"... Abstract — So far, the problem of positioning in wireless net-works has been mainly studied in a non-adversarial setting. In this work, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, th ..."
Abstract
-
Cited by 180 (12 self)
- Add to MetaCart
(Show Context)
Abstract — So far, the problem of positioning in wireless net-works has been mainly studied in a non-adversarial setting. In this work, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call Verifiable Multilateration. We then show how this mechanism can be used to secure positioning in sensor networks. We analyze our system through simulations. Keywords: System design, Simulations. 1 I.
Data collection, storage, and retrieval with an underwater sensor network
- In Proceedings of the International Conference on Embedded Networked Sensor Systems (ACM SenSys 2005
, 2005
"... In this paper we present a novel platform for underwater sensor networks to be used for long-term monitoring of coral reefs and fisheries. The sensor network consists of static and mobile underwater sensor nodes. The nodes communicate point-to-point using a novel high-speed optical communication sys ..."
Abstract
-
Cited by 143 (10 self)
- Add to MetaCart
(Show Context)
In this paper we present a novel platform for underwater sensor networks to be used for long-term monitoring of coral reefs and fisheries. The sensor network consists of static and mobile underwater sensor nodes. The nodes communicate point-to-point using a novel high-speed optical communication system integrated into the TinyOS stack, and they broadcast using an acoustic protocol integrated in the TinyOS stack. The nodes have a variety of sensing capabilities, including cameras, water temperature, and pressure. The mobile nodes can locate and hover above the static nodes for data muling, and they can perform network maintenance functions such as deployment, relocation, and recovery. In this paper we describe the hardware and software architecture of this underwater sensor network. We then describe the optical and acoustic networking protocols and present experimental networking and data collected in a pool, in rivers, and in the ocean. Finally, we describe our experiments with mobility for data muling in this network.
Secure positioning in wireless networks
- IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 2006
"... So far, the problem of positioning in wireless networks has been studied mainly in a nonadversarial setting. In this paper, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call v ..."
Abstract
-
Cited by 129 (10 self)
- Add to MetaCart
(Show Context)
So far, the problem of positioning in wireless networks has been studied mainly in a nonadversarial setting. In this paper, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call verifiable multilateration. We then show how this mechanism can be used to secure positioning in sensor networks. We analyze our system through simulations.
A Theory of Network Localization
, 2004
"... In this paper we provide a theoretical foundation for the problem of network localization in which some nodes know their locations and other nodes determine their locations by measuring the distances to their neighbors. We construct grounded graphs to model network localization and apply graph rigid ..."
Abstract
-
Cited by 123 (12 self)
- Add to MetaCart
(Show Context)
In this paper we provide a theoretical foundation for the problem of network localization in which some nodes know their locations and other nodes determine their locations by measuring the distances to their neighbors. We construct grounded graphs to model network localization and apply graph rigidity theory to test the conditions for unique localizability and to construct uniquely localizable networks. We further study the computational complexity of network localization and investigate a subclass of grounded graphs where localization can be computed efficiently. We conclude with a discussion of localization in sensor networks where the sensors are placed randomly.
Mobile Agent Middleware for Sensor Networks. An Application Case Study
- In Proceedings of the 4th International Conference on Information Processing in Sensor Networks (IPSN’05
, 2005
"... Abstract — Agilla is a mobile agent middleware that facilitates the rapid deployment of adaptive applications in wireless sensor networks (WSNs). Agilla allows users to create and inject special programs called mobile agents that coordinate through local tuple spaces, and migrate across the WSN perf ..."
Abstract
-
Cited by 91 (8 self)
- Add to MetaCart
(Show Context)
Abstract — Agilla is a mobile agent middleware that facilitates the rapid deployment of adaptive applications in wireless sensor networks (WSNs). Agilla allows users to create and inject special programs called mobile agents that coordinate through local tuple spaces, and migrate across the WSN performing application-specific tasks. This fluidity of code and state has the potential to transform a WSN into a shared, general-purpose computing platform capable of running several autonomous applications at a time, allowing us to harness its full potential. We have implemented and evaluated a fire tracking application to determine how well Agilla achieves its goals. Fire is modeled by agents that gradually spread throughout the network, engulfing nodes by inserting fire tuples into their local tuple spaces. Fire tracker agents are then used to form a perimeter around the fire. Using Agilla, we were able to rapidly create and deploy 47 byte fire agents, and 100 byte tracker agents on a WSN consisting of 26 MICA2 motes. Our experiments show that the tracker agents can form an 8-node perimeter around a burning node within 6.5 seconds and that it can adapt to a fire spreading at a rate of 7 seconds per hop. We also present the lessons learned about the adequacy of Agilla’s primitives, and regarding the efficiency, reliability, and adaptivity of mobile agents in a WSN. I.
Rendered Path: Range-Free Localization in Anisotropic Sensor Networks with Holes
, 2007
"... Sensor positioning is a crucial part of many location-dependent applications that utilize wireless sensor networks (WSNs). Current localization approaches can be divided into two groups: range-based and range-free. Due to the high costs and critical assumptions, the range-based schemes are often imp ..."
Abstract
-
Cited by 85 (14 self)
- Add to MetaCart
Sensor positioning is a crucial part of many location-dependent applications that utilize wireless sensor networks (WSNs). Current localization approaches can be divided into two groups: range-based and range-free. Due to the high costs and critical assumptions, the range-based schemes are often impractical for WSNs. The existing range-free schemes, on the other hand, suffer from poor accuracy and low scalability. Without the help of a large number of uniformly deployed seed nodes, those schemes fail in anisotropic WSNs with possible holes. To address this issue, we propose the Rendered Path (REP) protocol. To the best of our knowledge, REP is the only range-free protocol for locating sensors with constant number of seeds in anisotropic sensor networks.
Deploying Sensor Networks with Guaranteed Fault Tolerance
, 2005
"... We consider the problem of deploying or repairing a sensor network to guarantee a specified level of multi-path connectivity (k-connectivity) between all nodes. Such a guarantee simultaneously provides fault tolerance against node failures and high overall network capacity (by the max-flow min-cut t ..."
Abstract
-
Cited by 76 (4 self)
- Add to MetaCart
We consider the problem of deploying or repairing a sensor network to guarantee a specified level of multi-path connectivity (k-connectivity) between all nodes. Such a guarantee simultaneously provides fault tolerance against node failures and high overall network capacity (by the max-flow min-cut theorem). We design and analyze the first algorithms that place an almostminimum number of additional sensors to augment an existing network into a k-connected network, for any desired parameter k. Our algorithms have provable guarantees on the quality of the solution. Specifically, we prove that the number of additional sensors is within a constant factor of the absolute minimum, for any fixed k. We have implemented greedy and distributed versions of this algorithm, and demonstrate in simulation that they produce high-quality placements for the additional sensors.
The Sensor Selection Problem for Bounded Uncertainty Sensing Models
- IEEE Tran. Automation Science and Engineering
, 2005
"... We address the problem of selecting sensors so as to minimize the error in estimating the position of a target. We consider a generic sensor model where the measurements can be interpreted as polygonal, convex subsets of the plane. This model applies to a large class of sensors including cameras. We ..."
Abstract
-
Cited by 73 (3 self)
- Add to MetaCart
(Show Context)
We address the problem of selecting sensors so as to minimize the error in estimating the position of a target. We consider a generic sensor model where the measurements can be interpreted as polygonal, convex subsets of the plane. This model applies to a large class of sensors including cameras. We present an approximation algorithm which guarantees that the resulting error in estimation is within a factor 2 of the least possible error. In establishing this result, we formally prove that a constant number of sensors suffice for a good estimate -- an observation made by many researchers. In the second part of the paper, we study the scenario where the target's position is given by an uncertainty region and present algorithms for both probabilistic and online versions of this problem.