Results 1 - 10
of
324
Efficient influence maximization in social networks
- In Proc. of ACM KDD
, 2009
"... Influence maximization is the problem of finding a small subset of nodes (seed nodes) in a social network that could maximize the spread of influence. In this paper, we study the efficient influence maximization from two complementary directions. One is to improve the original greedy algorithm of [5 ..."
Abstract
-
Cited by 197 (18 self)
- Add to MetaCart
(Show Context)
Influence maximization is the problem of finding a small subset of nodes (seed nodes) in a social network that could maximize the spread of influence. In this paper, we study the efficient influence maximization from two complementary directions. One is to improve the original greedy algorithm of [5] and its improvement [7] to further reduce its running time, and the second is to propose new degree discount heuristics that improves influence spread. We evaluate our algorithms by experiments on two large academic collaboration graphs obtained from the online archival database arXiv.org. Our experimental results show that (a) our improved greedy algorithm achieves better running time comparing with the improvement of [7] with matching influence spread, (b) our degree discount heuristics achieve much better influence spread than classic degree and centrality-based heuristics, and when tuned for a specific influence cascade model, it achieves almost matching influence thread with the greedy algorithm, and more importantly (c) the degree discount heuristics run only in milliseconds while even the improved greedy algorithms run in hours in our experiment graphs with a few tens of thousands of nodes. Based on our results, we believe that fine-tuned heuristics may provide truly scalable solutions to the influence maximization problem with satisfying influence spread and blazingly fast running time. Therefore, contrary to what implied by the conclusion of [5] that traditional heuristics are outperformed by the greedy approximation algorithm, our results shed new lights on the research of heuristic algorithms.
Scalable Influence Maximization for Prevalent Viral Marketing in Large-Scale Social Networks
"... Influence maximization, defined by Kempe, Kleinberg, and Tardos (2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling preval ..."
Abstract
-
Cited by 183 (14 self)
- Add to MetaCart
(Show Context)
Influence maximization, defined by Kempe, Kleinberg, and Tardos (2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in largescale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (2003) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this paper, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread — it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100%–260 % increase in influence spread.
Learning Influence Probabilities In Social Networks
"... Recently, there has been tremendous interest in the phenomenon of influence propagation in social networks. The studies in this area assume they have as input to their problems a social graph with edges labeled with probabilities of influence between users. However, the question of where these proba ..."
Abstract
-
Cited by 148 (18 self)
- Add to MetaCart
Recently, there has been tremendous interest in the phenomenon of influence propagation in social networks. The studies in this area assume they have as input to their problems a social graph with edges labeled with probabilities of influence between users. However, the question of where these probabilities come from or how they can be computed from real social network data has been largely ignored until now. Thus it is interesting to ask whether from a social graph and a log of actions by its users, one can build models of influence. This is the main problem attacked in this paper. In addition to proposing models and algorithms for learning the model parameters and for testing the learned models to make predictions, we also develop techniques for predicting the time by which a user may be expected to perform an action. We validate our ideas and techniques using the Flickr data set consisting of a social graph with 1.3M nodes, 40M edges, and an action log consisting of 35M tuples referring to 300K distinct actions. Beyond showing that there is genuine influence happening in a real social network, we show that our techniques have excellent prediction performance.
Patterns of temporal variation in online media
, 2010
"... Online content exhibits rich temporal dynamics, and diverse realtime user generated content further intensifies this process. However, temporal patterns by which online content grows and fades over time, and by which different pieces of content compete for attention remain largely unexplored. We stu ..."
Abstract
-
Cited by 144 (5 self)
- Add to MetaCart
(Show Context)
Online content exhibits rich temporal dynamics, and diverse realtime user generated content further intensifies this process. However, temporal patterns by which online content grows and fades over time, and by which different pieces of content compete for attention remain largely unexplored. We study temporal patterns associated with online content and how the content’s popularity grows and fades over time. The attention that content receives on the Web varies depending on many factors and occurs on very different time scales and at different resolutions. In order to uncover the temporal dynamics of online content we formulate a time series clustering problem using a similarity metric that is invariant to scaling and shifting. We develop the K-Spectral Centroid (K-SC) clustering algorithm that effectively finds cluster centroids with our similarity measure. By applying an adaptive wavelet-based incremental approach to clustering, we scale K-SC to large data sets. We demonstrate our approach on two massive datasets: a set of 580 million Tweets, and a set of 170 million blog posts and news media articles. We find that K-SC outperforms the K-means clustering algorithm in finding distinct shapes of time series. Our analysis shows that there are six main temporal shapes of attention of online content. We also present a simple model that reliably predicts the shape of attention by using information about only a small number of participants. Our analyses offer insight into common temporal patterns of the content on the Web and broaden the understanding of the dynamics of human attention.
Inferring Networks of Diffusion and Influence
, 2010
"... Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in ..."
Abstract
-
Cited by 116 (13 self)
- Add to MetaCart
Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NP-hard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and in practice gives provably near-optimal performance. We demonstrate the effectiveness of our approach by tracing information cascades in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news tends to have a core-periphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.
Optimal and scalable distribution of content updates over a mobile social network
- In Proc. IEEE INFOCOM
, 2009
"... Number: CR-PRL-2008-08-0001 ..."
Scalable Influence Maximization in Social Networks under the Linear Threshold Model
"... Abstract—Influence maximization is the problem of finding a small set of most influential nodes in a social network so that their aggregated influence in the network is maximized. In this paper, we study influence maximization in the linear threshold model, one of the important models formalizing th ..."
Abstract
-
Cited by 75 (9 self)
- Add to MetaCart
(Show Context)
Abstract—Influence maximization is the problem of finding a small set of most influential nodes in a social network so that their aggregated influence in the network is maximized. In this paper, we study influence maximization in the linear threshold model, one of the important models formalizing the behavior of influence propagation in social networks. We first show that computing exact influence in general networks in the linear threshold model is #P-hard, which closes an open problem left in the seminal work on influence maximization by Kempe, Kleinberg, and Tardos, 2003. As a contrast, we show that computing influence in directed acyclic graphs (DAGs) can be done in time linear to the size of the graphs. Based on the fast computation in DAGs, we propose the first scalable influence maximization algorithm tailored for the linear threshold model. We conduct extensive simulations to show that our algorithm is scalable to networks with millions of nodes and edges, is orders of magnitude faster than the greedy approximation algorithm proposed by Kempe et al. and its optimized versions, and performs consistently among the best algorithms while other heuristic algorithms not design specifically for the linear threshold model have unstable performances on different realworld networks. Keywords-influence maximization; social networks; linear threshold model; I.
Adaptive submodularity: Theory and applications in active learning and stochastic optimization
- J. Artificial Intelligence Research
, 2011
"... Many problems in artificial intelligence require adaptively making a sequence of decisions with uncertain outcomes under partial observability. Solving such stochastic optimization problems is a fundamental but notoriously difficult challenge. In this paper, we introduce the concept of adaptive subm ..."
Abstract
-
Cited by 70 (15 self)
- Add to MetaCart
(Show Context)
Many problems in artificial intelligence require adaptively making a sequence of decisions with uncertain outcomes under partial observability. Solving such stochastic optimization problems is a fundamental but notoriously difficult challenge. In this paper, we introduce the concept of adaptive submodularity, generalizing submodular set functions to adaptive policies. We prove that if a problem satisfies this property, a simple adaptive greedy algorithm is guaranteed to be competitive with the optimal policy. In addition to providing performance guarantees for both stochastic maximization and coverage, adaptive submodularity can be exploited to drastically speed up the greedy algorithm by using lazy evaluations. We illustrate the usefulness of the concept by giving several examples of adaptive submodular objectives arising in diverse AI applications including management of sensing resources, viral marketing and active learning. Proving adaptive submodularity for these problems allows us to recover existing results in these applications as special cases, improve approximation guarantees and handle natural generalizations. 1.
Toward community sensing.
- In ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN),
, 2008
"... Abstract A great opportunity exists to fuse information from populations of privately-held sensors to create useful sensing applications. For example, GPS devices, embedded in cellphones and automobiles, might one day be employed as distributed networks of velocity sensors for traffic monitoring an ..."
Abstract
-
Cited by 65 (8 self)
- Add to MetaCart
(Show Context)
Abstract A great opportunity exists to fuse information from populations of privately-held sensors to create useful sensing applications. For example, GPS devices, embedded in cellphones and automobiles, might one day be employed as distributed networks of velocity sensors for traffic monitoring and routing. Unfortunately, privacy and resource considerations limit access to such data streams. We describe principles of community sensing that offer mechanisms for sharing data from privately held sensors. The methods take into account the likely availability of sensors, the contextsensitive value of sensor information, based on models of phenomena and demand, and sensor owners' preferences about privacy and resource usage. We present efficient and well-characterized approximations of optimal sensing policies. We provide details on key principles of community sensing and highlight their use within a case study for road traffic monitoring.