Results 1 - 10
of
906
Social Network Analysis for Routing in Disconnected Delay-tolerant MANETs
, 2007
"... Message delivery in sparse Mobile Ad hoc Networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes may move fr ..."
Abstract
-
Cited by 276 (1 self)
- Add to MetaCart
Message delivery in sparse Mobile Ad hoc Networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes may move freely. This paper presents a multidisciplinary solution based on the consideration of the socalled small world dynamics which have been proposed for economy and social studies and have recently revealed to be a successful approach to be exploited for characterising information propagation in wireless networks. To this purpose, some bridge nodes are identified based on their centrality characteristics, i.e., on their capability to broker information exchange among otherwise disconnected nodes. Due to the complexity of the centrality metrics in populated networks the concept of ego networks is exploited where nodes are not required to exchange information about the entire network topology, but only locally available information is considered. Then SimBet Routing is proposed which exploits the exchange of pre-estimated ‘betweenness’ centrality metrics and locally determined social ‘similarity’ to the destination node. We present simulations using real trace data to demonstrate that SimBet Routing results in delivery performance close to Epidemic Routing but with significantly reduced overhead. Additionally, we show that Sim-Bet Routing outperforms PRoPHET Routing, particularly when the sending and receiving nodes have low connectivity.
Predicting positive and negative links in online social networks,”
- in Proceedings of the 19th International World Wide Web Conference (WWW ’10),
, 2010
"... ABSTRACT We study online social networks in which relationships can be either positive (indicating relations such as friendship) or negative (indicating relations such as opposition or antagonism). Such a mix of positive and negative links arise in a variety of online settings; we study datasets fr ..."
Abstract
-
Cited by 233 (7 self)
- Add to MetaCart
(Show Context)
ABSTRACT We study online social networks in which relationships can be either positive (indicating relations such as friendship) or negative (indicating relations such as opposition or antagonism). Such a mix of positive and negative links arise in a variety of online settings; we study datasets from Epinions, Slashdot and Wikipedia. We find that the signs of links in the underlying social networks can be predicted with high accuracy, using models that generalize across this diverse range of sites. These models provide insight into some of the fundamental principles that drive the formation of signed links in networks, shedding light on theories of balance and status from social psychology; they also suggest social computing applications by which the attitude of one user toward another can be estimated from evidence provided by their relationships with other members of the surrounding social network.
Predicting tie strength with social media
- In Proceedings of the Conferece on Human Factors in Computing Systems (CHI’09
, 2009
"... Social media treats all users the same: trusted friend or total stranger, with little or nothing in between. In reality, relationships fall everywhere along this spectrum, a topic social science has investigated for decades under the theme of tie strength. Our work bridges this gap between theory an ..."
Abstract
-
Cited by 218 (6 self)
- Add to MetaCart
(Show Context)
Social media treats all users the same: trusted friend or total stranger, with little or nothing in between. In reality, relationships fall everywhere along this spectrum, a topic social science has investigated for decades under the theme of tie strength. Our work bridges this gap between theory and practice. In this paper, we present a predictive model that maps social media data to tie strength. The model builds on a dataset of over 2,000 social media ties and performs quite well, distinguishing between strong and weak ties with over 85 % accuracy. We complement these quantitative findings with interviews that unpack the relationships we could not predict. The paper concludes by illustrating how modeling tie strength can improve social media design elements, including privacy controls, message routing, friend introductions and information prioritization. Author Keywords Social media, social networks, relationship modeling, ties,
De-anonymizing social networks
, 2009
"... Operators of online social networks are increasingly sharing potentially sensitive information about users and their relationships with advertisers, application developers, and data-mining researchers. Privacy is typically protected by anonymization, i.e., removing names, addresses, etc. We present ..."
Abstract
-
Cited by 216 (6 self)
- Add to MetaCart
(Show Context)
Operators of online social networks are increasingly sharing potentially sensitive information about users and their relationships with advertisers, application developers, and data-mining researchers. Privacy is typically protected by anonymization, i.e., removing names, addresses, etc. We present a framework for analyzing privacy and anonymity in social networks and develop a new re-identification algorithm targeting anonymized socialnetwork graphs. To demonstrate its effectiveness on realworld networks, we show that a third of the users who can be verified to have accounts on both Twitter, a popular microblogging service, and Flickr, an online photo-sharing site, can be re-identified in the anonymous Twitter graph with only a 12 % error rate. Our de-anonymization algorithm is based purely on the network topology, does not require creation of a large number of dummy “sybil” nodes, is robust to noise and all existing defenses, and works even when the overlap between the target network and the adversary’s auxiliary information is small.
Microscopic Evolution of Social Networks
, 2008
"... We present a detailed study of network evolution by analyzing four large online social networks with full temporal information about node and edge arrivals. For the first time at such a large scale, we study individual node arrival and edge creation processes that collectively lead to macroscopic pr ..."
Abstract
-
Cited by 206 (10 self)
- Add to MetaCart
We present a detailed study of network evolution by analyzing four large online social networks with full temporal information about node and edge arrivals. For the first time at such a large scale, we study individual node arrival and edge creation processes that collectively lead to macroscopic properties of networks. Using a methodology based on the maximum-likelihood principle, we investigate a wide variety of network formation strategies, and show that edge locality plays a critical role in evolution of networks. Our findings supplement earlier network models based on the inherently non-local preferential attachment. Based on our observations, we develop a complete model of network evolution, where nodes arrive at a prespecified rate and select their lifetimes. Each node then independently initiates edges according to a “gap” process, selecting a destination for each edge according to a simple triangle-closing model free of any parameters. We show analytically that the combination of the gap distribution with the node lifetime leads to a power law out-degree distribution that accurately reflects the true network in all four cases. Finally, we give model parameter settings that allow automatic evolution and generation of realistic synthetic networks of arbitrary scale.
Supervised Random Walks: Predicting and Recommending Links in Social Networks
"... Predicting the occurrence of links is a fundamental problem in networks. In the link prediction problem we are given a snapshot of a network and would like to infer which interactions among existing members are likely to occur in the near future or which existing interactions are we missing. Althoug ..."
Abstract
-
Cited by 147 (3 self)
- Add to MetaCart
(Show Context)
Predicting the occurrence of links is a fundamental problem in networks. In the link prediction problem we are given a snapshot of a network and would like to infer which interactions among existing members are likely to occur in the near future or which existing interactions are we missing. Although this problem has been extensively studied, the challenge of how to effectively combine the information from the network structure with rich node and edge attribute data remains largely open. We develop an algorithm based on Supervised Random Walks that naturally combines the information from the network structure with node and edge level attributes. We achieve this by using these attributes to guide a random walk on the graph. We formulate a supervised learning task where the goal is to learn a function that assigns strengths to edges in the network such that a random walker is more likely to visit the nodes to which new links will be created in the future. We develop an efficient training algorithm to directly learn the edge strength estimation function. Our experiments on the Facebook social graph and large collaboration networks show that our approach outperforms state-of-theart unsupervised approaches as well as approaches that are based on feature extraction.
Collective entity resolution in relational data
- ACM Transactions on Knowledge Discovery from Data (TKDD
, 2006
"... Many databases contain uncertain and imprecise references to real-world entities. The absence of identifiers for the underlying entities often results in a database which contains multiple references to the same entity. This can lead not only to data redundancy, but also inaccuracies in query proces ..."
Abstract
-
Cited by 146 (12 self)
- Add to MetaCart
Many databases contain uncertain and imprecise references to real-world entities. The absence of identifiers for the underlying entities often results in a database which contains multiple references to the same entity. This can lead not only to data redundancy, but also inaccuracies in query processing and knowledge extraction. These problems can be alleviated through the use of entity resolution. Entity resolution involves discovering the underlying entities and mapping each database reference to these entities. Traditionally, entities are resolved using pairwise similarity over the attributes of references. However, there is often additional relational information in the data. Specifically, references to different entities may cooccur. In these cases, collective entity resolution, in which entities for cooccurring references are determined jointly rather than independently, can improve entity resolution accuracy. We propose a novel relational clustering algorithm that uses both attribute and relational information for determining the underlying domain entities, and we give an efficient implementation. We investigate the impact that different relational similarity measures have on entity resolution quality. We evaluate our collective entity resolution algorithm on multiple real-world databases. We show that it improves entity resolution performance over both attribute-based baselines and over algorithms that consider relational information but do not resolve entities collectively. In addition, we perform detailed experiments on synthetically generated data to identify data characteristics that favor collective relational resolution over purely attribute-based algorithms.
Inferring Networks of Diffusion and Influence
, 2010
"... Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in ..."
Abstract
-
Cited by 116 (13 self)
- Add to MetaCart
Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NP-hard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and in practice gives provably near-optimal performance. We demonstrate the effectiveness of our approach by tracing information cascades in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news tends to have a core-periphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.
GraphChi: Large-scale Graph Computation On just a PC
- In Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation, OSDI’12
, 2012
"... Current systems for graph computation require a distributed computing cluster to handle very large real-world problems, such as analysis on social networks or the web graph. While distributed computational resources have become more accessible, developing distributed graph algorithms still remains c ..."
Abstract
-
Cited by 115 (6 self)
- Add to MetaCart
(Show Context)
Current systems for graph computation require a distributed computing cluster to handle very large real-world problems, such as analysis on social networks or the web graph. While distributed computational resources have become more accessible, developing distributed graph algorithms still remains challenging, especially to non-experts. In this work, we present GraphChi, a disk-based system for computing efficiently on graphs with billions of edges. By using a well-known method to break large graphs into small parts, and a novel parallel sliding windows method, GraphChi is able to execute several advanced data mining, graph mining, and machine learning algorithms on very large graphs, using just a single consumer-level computer. We further extend GraphChi to support graphs that evolve over time, and demonstrate that, on a single computer, GraphChi can process over one hundred thousand graph updates per second, while simultaneously performing computation. We show, through experiments and theoretical analysis, that GraphChi performs well on both SSDs and rotational hard drives. By repeating experiments reported for existing distributed systems, we show that, with only fraction of the resources, GraphChi can solve the same problems in very reasonable time. Our work makes large-scale graph computation available to anyone with a modern PC. 1
Network-based marketing: Identifying likely adopters via consumer networks
- Statistical Science
"... Abstract. Network-based marketing refers to a collection of marketing techniques that take advantage of links between consumers to increase sales. We concentrate on the consumer networks formed using direct interactions (e.g., communications) between consumers. We survey the diverse literature on su ..."
Abstract
-
Cited by 114 (12 self)
- Add to MetaCart
(Show Context)
Abstract. Network-based marketing refers to a collection of marketing techniques that take advantage of links between consumers to increase sales. We concentrate on the consumer networks formed using direct interactions (e.g., communications) between consumers. We survey the diverse literature on such marketing with an emphasis on the statistical methods used and the data to which these methods have been applied. We also provide a discussion of challenges and opportunities for this burgeoning research topic. Our survey highlights a gap in the literature. Because of inadequate data, prior studies have not been able to provide direct, statistical support for the hypothesis that network linkage can directly affect product/service adoption. Using a new data set that represents the adoption of a new telecommunications service, we show very strong support for the hypothesis. Specifically, we show three main results: (1) “Network neighbors”—those consumers linked to a prior customer—adopt the service at a rate 3–5 times greater than baseline groups selected by the best practices of the firm’s marketing team. In addition, analyzing the network allows the firm to acquire new customers who otherwise would have fallen through the cracks, because they would not have been identified based on traditional attributes. (2) Statistical models, built with a very large amount of geographic, demographic and prior purchase data, are significantly and substantially improved by including network information. (3) More detailed network information allows the ranking of the network neighbors so as to permit the selection of small sets of individuals with very high probabilities of adoption. Key words and phrases: Viral marketing, word of mouth, targeted marketing, network analysis, classification, statistical relational learning. 1.