Results 1 - 10
of
246
People-trackingby-detection and people-detection-by-tracking
- In CVPR’08
"... Both detection and tracking people are challenging problems, especially in complex real world scenes that commonly involve multiple people, complicated occlusions, and cluttered or even moving backgrounds. People detectors have been shown to be able to locate pedestrians even in complex street scene ..."
Abstract
-
Cited by 190 (12 self)
- Add to MetaCart
(Show Context)
Both detection and tracking people are challenging problems, especially in complex real world scenes that commonly involve multiple people, complicated occlusions, and cluttered or even moving backgrounds. People detectors have been shown to be able to locate pedestrians even in complex street scenes, but false positives have remained frequent. The identification of particular individuals has remained challenging as well. On the other hand, tracking methods are able to find a particular individual in image sequences, but are severely challenged by real-world scenarios such as crowded street scenes. In this paper, we combine the advantages of both detection and tracking in a single framework. The approximate articulation of each person is detected in every frame based on local features that model the appearance of individual body parts. Prior knowledge on possible articulations and temporal coherency within a walking cycle are modeled using a hierarchical Gaussian process latent variable model (hGPLVM). We show how the combination of these results improves hypotheses for position and articulation of each person in several subsequent frames. We present experimental results that demonstrate how this allows to detect and track multiple people in cluttered scenes with reoccurring occlusions. 1.
Semi-Supervised On-line Boosting for Robust Tracking
, 2008
"... Recently, on-line adaptation of binary classifiers for tracking have been investigated. On-line learning allows for simple classifiers since only the current view of the object from its surrounding background needs to be discriminiated. However, on-line adaption faces one key problem: Each update of ..."
Abstract
-
Cited by 186 (8 self)
- Add to MetaCart
(Show Context)
Recently, on-line adaptation of binary classifiers for tracking have been investigated. On-line learning allows for simple classifiers since only the current view of the object from its surrounding background needs to be discriminiated. However, on-line adaption faces one key problem: Each update of the tracker may introduce an error which, finally, can lead to tracking failure (drifting). The contribution of this paper is a novel on-line semi-supervised boosting method which significantly alleviates the drifting problem in tracking applications. This allows to limit the drifting problem while still staying adaptive to appearance changes. The main idea is to formulate the update process in a semisupervised fashion as combined decision of a given prior and an on-line classifier. This comes without any parameter tuning. In the experiments, we demonstrate real-time tracking of our SemiBoost tracker on several challenging test sequences where our tracker outperforms other on-line tracking methods.
P-n learning: Bootstrapping binary classifiers by structural constraints
- In IEEE Conference on Computer Vision and Pattern Recognition
, 2010
"... This paper shows that the performance of a binary classifier can be significantly improved by the processing of structured unlabeled data, i.e. data are structured if knowing the label of one example restricts the labeling of the others. We propose a novel paradigm for training a binary classifier f ..."
Abstract
-
Cited by 143 (4 self)
- Add to MetaCart
(Show Context)
This paper shows that the performance of a binary classifier can be significantly improved by the processing of structured unlabeled data, i.e. data are structured if knowing the label of one example restricts the labeling of the others. We propose a novel paradigm for training a binary classifier from labeled and unlabeled examples that we call P-N learning. The learning process is guided by positive (P) and negative (N) constraints which restrict the labeling of the unlabeled set. P-N learning evaluates the classifier on the unlabeled data, identifies examples that have been classified in contradiction with structural constraints and augments the training set with the corrected samples in an iterative process. We propose a theory that formulates the conditions under which P-N learning guarantees improvement of the initial classifier and validate it on synthetic and real data. P-N learning is applied to the problem of on-line learning of object detector during tracking. We show that an accurate object detector can be learned from a single example and an unlabeled video sequence where the object may occur. The algorithm is compared with related approaches and state-of-the-art is achieved on a variety of objects (faces, pedestrians, cars, motorbikes and animals). 1.
Robust Object Tracking with Online Multiple Instance Learning
, 2011
"... In this paper, we address the problem of tracking an object in a video given its location in the first frame and no other information. Recently, a class of tracking techniques called “tracking by detection ” has been shown to give promising results at real-time speeds. These methods train a discrim ..."
Abstract
-
Cited by 140 (7 self)
- Add to MetaCart
In this paper, we address the problem of tracking an object in a video given its location in the first frame and no other information. Recently, a class of tracking techniques called “tracking by detection ” has been shown to give promising results at real-time speeds. These methods train a discriminative classifier in an online manner to separate the object from the background. This classifier bootstraps itself by using the current tracker state to extract positive and negative examples from the current frame. Slight inaccuracies in the tracker can therefore lead to incorrectly labeled training examples, which degrade the classifier and can cause drift. In this paper, we show that using Multiple Instance Learning (MIL) instead of traditional supervised learning avoids these problems and can therefore lead to a more robust tracker with fewer parameter tweaks. We propose a novel online MIL algorithm for object tracking that achieves superior results with real-time performance. We present thorough experimental results (both qualitative and quantitative) on a number of challenging video clips.
You’ll never walk alone: modeling social behavior for multi-target tracking
- IN INT. CONF. ON COMPUTER VISION (ICCV
, 2009
"... Object tracking typically relies on a dynamic model to predict the object’s location from its past trajectory. In crowded scenarios a strong dynamic model is particularly important, because more accurate predictions allow for smaller search regions, which greatly simplifies data asso-ciation. Tradit ..."
Abstract
-
Cited by 120 (3 self)
- Add to MetaCart
Object tracking typically relies on a dynamic model to predict the object’s location from its past trajectory. In crowded scenarios a strong dynamic model is particularly important, because more accurate predictions allow for smaller search regions, which greatly simplifies data asso-ciation. Traditional dynamic models predict the location for each target solely based on its own history, without tak-ing into account the remaining scene objects. Collisions are resolved only when they happen. Such an approach ignores important aspects of human behavior: people are driven by their future destination, take into account their environment, anticipate collisions, and adjust their trajec-tories at an early stage in order to avoid them. In this work, we introduce a model of dynamic social behavior, inspired by models developed for crowd simulation. The model is trained with videos recorded from birds-eye view at busy locations, and applied as a motion model for multi-people tracking from a vehicle-mounted camera. Experiments on real sequences show that accounting for social interactions and scene knowledge improves tracking performance, espe-cially during occlusions.
Robust tracking-by-detection using a detector confidence particle filter
- In ICCV
, 2009
"... We propose a novel approach for multi-person trackingby-detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence of pedestrian detectors and online trained, instance-specific classifiers as a graded observation model. ..."
Abstract
-
Cited by 110 (3 self)
- Add to MetaCart
(Show Context)
We propose a novel approach for multi-person trackingby-detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence of pedestrian detectors and online trained, instance-specific classifiers as a graded observation model. Thus, generic object category knowledge is complemented by instance-specific information. A main contribution of this paper is the exploration of how these unreliable information sources can be used for multi-person tracking. The resulting algorithm robustly tracks a large number of dynamically moving persons in complex scenes with occlusions, does not rely on background modeling, and operates entirely in 2D (requiring no camera or ground plane calibration). Our Markovian approach relies only on information from the past and is suitable for online applications. We evaluate the performance on a variety of datasets and show that it improves upon state-of-the-art methods. 1.
Coupled detection and trajectory estimation for multi-object tracking
- In ICCV
, 2007
"... We present a novel approach for multi-object tracking which considers object detection and spacetime trajectory estimation as a coupled optimization problem. It is formulated in a hypothesis selection framework and builds upon a state-of-the-art pedestrian detector. At each time instant, it searches ..."
Abstract
-
Cited by 101 (9 self)
- Add to MetaCart
(Show Context)
We present a novel approach for multi-object tracking which considers object detection and spacetime trajectory estimation as a coupled optimization problem. It is formulated in a hypothesis selection framework and builds upon a state-of-the-art pedestrian detector. At each time instant, it searches for the globally optimal set of spacetime trajectories which provides the best explanation for the current image and for all evidence collected so far, while satisfying the constraints that no two objects may occupy the same physical space, nor explain the same image pixels at any point in time. Successful trajectory hypotheses are fed back to guide object detection in future frames. The optimization procedure is kept efficient through incremental computation and conservative hypothesis pruning. The resulting approach can initialize automatically and track a large and varying number of persons over long periods and through complex scenes with clutter, occlusions, and large-scale background changes. Also, the global optimization framework allows our system to recover from mismatches and temporarily lost tracks. We demonstrate the feasibility of the proposed approach on several challenging video sequences. 1.
Online Multi-Person Trackingby-Detection from a Single, Uncalibrated Camera
- PAMI
, 2010
"... In this paper, we address the problem of automatically detecting and tracking a variable number of persons in complex scenes using a monocular, potentially moving, uncalibrated camera. We propose a novel approach for multi-person tracking-by-detection in a particle filtering framework. In addition ..."
Abstract
-
Cited by 78 (0 self)
- Add to MetaCart
In this paper, we address the problem of automatically detecting and tracking a variable number of persons in complex scenes using a monocular, potentially moving, uncalibrated camera. We propose a novel approach for multi-person tracking-by-detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence of pedestrian detectors and online trained, instance-specific classifiers as a graded observation model. Thus, generic object category knowledge is complemented by instance-specific information. The main contribution of this paper is to explore how these unreliable information sources can be used for robust multi-person tracking. The algorithm detects and tracks a large number of dynamically moving persons in complex scenes with occlusions, does not rely on background modeling, requires no camera or ground plane calibration, and only makes use of information from the past. Hence, it imposes very few restrictions and is suitable for online applications. Our experiments show that the method yields good tracking performance in a large variety of highly dynamic scenarios, such as typical surveillance videos, webcam footage, or sports sequences. We demonstrate that our algorithm outperforms other methods that rely on additional information. Furthermore, we analyze the influence of different algorithm components on the robustness.
Multi-target tracking by on-line learned discriminative appearance models
- IEEE Conference on Computer Vision and Pattern Recognition
, 2010
"... We present an approach for online learning of discriminative appearance models for robust multi-target tracking in a crowded scene from a single camera. Although much progress has been made in developing methods for optimal data association, there has been comparatively less work on the appearance m ..."
Abstract
-
Cited by 69 (5 self)
- Add to MetaCart
(Show Context)
We present an approach for online learning of discriminative appearance models for robust multi-target tracking in a crowded scene from a single camera. Although much progress has been made in developing methods for optimal data association, there has been comparatively less work on the appearance models, which are key elements for good performance. Many previous methods either use simple features such as color histograms, or focus on the discriminability between a target and the background which does not resolve ambiguities between the different targets. We propose an algorithm for learning a discriminative appearance model for different targets. Training samples are collected online from tracklets within a time sliding window based on some spatial-temporal constraints; this allows the models to adapt to target instances. Learning uses an AdaBoost algorithm that combines effective image descriptors and their corresponding similarity measurements. We term the learned models as OLDAMs. Our evaluations indicate that OLDAMs have significantly higher discrimination between different targets than conventional holistic color histograms, and when integrated into a hierarchical association framework, they help improve the tracking accuracy, particularly reducing the false alarms and identity switches. 1.
Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles
, 2008
"... We present a novel approach for multi-object tracking which considers object detection and spacetime trajectory estimation as a coupled optimization problem. Our approach is formulated in a Minimum Description Length hypothesis selection framework, which allows our system to recover from mismatches ..."
Abstract
-
Cited by 66 (10 self)
- Add to MetaCart
(Show Context)
We present a novel approach for multi-object tracking which considers object detection and spacetime trajectory estimation as a coupled optimization problem. Our approach is formulated in a Minimum Description Length hypothesis selection framework, which allows our system to recover from mismatches and temporarily lost tracks. Building upon a state-of-the-art object detector, it performs multiview/multicategory object recognition to detect cars and pedestrians in the input images. The 2D object detections are checked for their consistency with (automatically estimated) scene geometry and are converted to 3D observations which are accumulated in a world coordinate frame. A subsequent trajectory estimation module analyzes the resulting 3D observations to find physically plausible spacetime trajectories. Tracking is achieved by performing model selection after every frame. At each time instant, our approach searches for the globally optimal set of spacetime trajectories which provides the best explanation for the current image and for all evidence collected so far while satisfying the constraints that no two objects may occupy the same physical space nor explain the same image pixels at any point in time. Successful trajectory hypotheses are then fed back to guide object detection in future frames. The optimization procedure is kept efficient through incremental computation and conservative hypothesis pruning. We evaluate our approach on several challenging video sequences and demonstrate its performance on both a surveillance-type scenario and a scenario where the input videos are taken from inside a moving vehicle passing through crowded city areas.