Results 1 - 10
of
144
Flash Photography Enhancement via Intrinsic Relighting
- ACM Trans. Graphics
, 2004
"... Figure 1: (a) Top: Photograph taken in a dark environment, the image is noisy and/or blurry. Bottom: Flash photography provides a sharp but flat image with distracting shadows at the silhouette of objects. (b) Inset showing the noise of the available-light image. (c) Our technique merges the two ima ..."
Abstract
-
Cited by 144 (6 self)
- Add to MetaCart
Figure 1: (a) Top: Photograph taken in a dark environment, the image is noisy and/or blurry. Bottom: Flash photography provides a sharp but flat image with distracting shadows at the silhouette of objects. (b) Inset showing the noise of the available-light image. (c) Our technique merges the two images to transfer the ambiance of the available lighting. Note the shadow of the candle on the table. Our technique enhances photographs shot in dark environments by combining a picture taken with the available light and one taken with the flash. We preserve the ambiance of the original lighting and insert the sharpness. We use the bilateral filter to decompose the images into detail and large scale. We reconstruct the image using the large scale of the available lighting and the detail of the flash. We detect and correct flash shadow. Our output combines the advantages of available illumination and flash photography.
Seamless image stitching in the gradient domain
- In Proceedings of the European Conference on Computer Vision
, 2006
"... Abstract. Image stitching is used to combine several individual images having some overlap into a composite image. The quality of image stitching is measured by the similarity of the stitched image to each of the input images, and by the visibility of the seam between the stitched images. In order t ..."
Abstract
-
Cited by 114 (1 self)
- Add to MetaCart
(Show Context)
Abstract. Image stitching is used to combine several individual images having some overlap into a composite image. The quality of image stitching is measured by the similarity of the stitched image to each of the input images, and by the visibility of the seam between the stitched images. In order to define and get the best possible stitching, we introduce several formal cost functions for the evaluation of the quality of stitching. In these cost functions, the similarity to the input images and the visibility of the seam are defined in the gradient domain, minimizing the disturbing edges along the seam. A good image stitching will optimize these cost functions, overcoming both photometric inconsistencies and geometric misalignments between the stitched images. This approach is demonstrated in the generation of panoramic images and in object blending. Comparisons with existing methods show the benefits of optimizing the measures in the gradient domain. 1
Intrinsic Images by Entropy Minimization
- Proc. 8th European Conf. on Computer Vision, Praque
, 2004
"... A method was recently devised for the recovery of an invariant image from a 3-band colour image. The invariant image, originally 1D greyscale but here derived as a 2D chromaticity, is independent of lighting, and also has shading removed: it forms an intrinsic image that may be used as a guide in ..."
Abstract
-
Cited by 94 (14 self)
- Add to MetaCart
(Show Context)
A method was recently devised for the recovery of an invariant image from a 3-band colour image. The invariant image, originally 1D greyscale but here derived as a 2D chromaticity, is independent of lighting, and also has shading removed: it forms an intrinsic image that may be used as a guide in recovering colour images that are independent of illumination conditions. Invariance to illuminant colour and intensity means that such images are free of shadows, as well, to a good degree. The method devised finds an intrinsic reflectivity image based on assumptions of Lambertian reflectance, approximately Planckian lighting, and fairly narrowband camera sensors. Nevertheless, the method works well when these assumptions do not hold. A crucial piece of information is the angle for an "invariant direction" in a log-chromaticity space. To date, we have gleaned this information via a preliminary calibration routine, using the camera involved to capture images of a colour target under different lights. In this paper, we show that we can in fact dispense with the calibration step, by recognizing a simple but important fact: the correct projection is that which minimizes entropy in the resulting invariant image. To show that this must be the case we first consider synthetic images, and then apply the method to real images. We show that not only does a correct shadow-free image emerge, but also that the angle found agrees with that recovered from a calibration. As a result, we can find shadow-free images for images with unknown camera, and the method is applied successfully to remove shadows from unsourced imagery.
Automatic Estimation and Removal of Noise from a Single Image
, 2008
"... Image denoising algorithms often assume an additive white Gaussian noise (AWGN) process that is independent of the actual RGB values. Such approaches cannot effectively remove color noise produced by today’s CCD digital camera. In this paper, we propose a unified framework for two tasks: automatic ..."
Abstract
-
Cited by 61 (3 self)
- Add to MetaCart
(Show Context)
Image denoising algorithms often assume an additive white Gaussian noise (AWGN) process that is independent of the actual RGB values. Such approaches cannot effectively remove color noise produced by today’s CCD digital camera. In this paper, we propose a unified framework for two tasks: automatic estimation and removal of color noise from a single image using piecewise smooth image models. We introduce the noise level function (NLF), which is a continuous function describing the noise level as a function of image brightness. We then estimate an upper bound of the real NLF by fitting a lower envelope to the standard deviations of per-segment image variances. For denoising, the chrominance of color noise is significantly removed by projecting pixel values onto a line fit to the RGB values in each segment. Then, a Gaussian conditional random field (GCRF) is constructed to obtain the underlying clean image from the noisy input. Extensive experiments are conducted to test the proposed algorithm, which is shown to outperform state-of-the-art denoising algorithms.
Closing the Loop in Scene Interpretation
"... Image understanding involves analyzing many different aspects of the scene. In this paper, we are concerned with how these tasks can be combined in a way that improves the performance of each of them. Inspired by Barrow and Tenenbaum, we present a flexible framework for interfacing scene analysis pr ..."
Abstract
-
Cited by 58 (5 self)
- Add to MetaCart
(Show Context)
Image understanding involves analyzing many different aspects of the scene. In this paper, we are concerned with how these tasks can be combined in a way that improves the performance of each of them. Inspired by Barrow and Tenenbaum, we present a flexible framework for interfacing scene analysis processes using intrinsic images. Each intrinsic image is a registered map describing one characteristic of the scene. We apply this framework to develop an integrated 3D scene understanding system with estimates of surface orientations, occlusion boundaries, objects, camera viewpoint, and relative depth. Our experiments on a set of 300 outdoor images demonstrate that these tasks reinforce each other, and we illustrate a coherent scene understanding with automatically reconstructed 3D models. 1.
User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior
"... When we take a picture through transparent glass the image we obtain is often a linear superposition of two images: the image of the scene beyond the glass plus the image of the scene reflected by the glass. ..."
Abstract
-
Cited by 54 (4 self)
- Add to MetaCart
When we take a picture through transparent glass the image we obtain is often a linear superposition of two images: the image of the scene beyond the glass plus the image of the scene reflected by the glass.
Illumination normalization with time-dependent intrinsic images for video surveillance
- In Proc. of IEEE Int’l Conf. on Computer Vision and Pattern Recognition, 2004
, 2003
"... Cast shadows produce troublesome effects for video surveillance systems, typically for object tracking from a fixed viewpoint, since it yields appearance variations of objects depending on whether they are inside or outside the shadow. To robustly eliminate these shadows from image sequences as a pr ..."
Abstract
-
Cited by 52 (3 self)
- Add to MetaCart
(Show Context)
Cast shadows produce troublesome effects for video surveillance systems, typically for object tracking from a fixed viewpoint, since it yields appearance variations of objects depending on whether they are inside or outside the shadow. To robustly eliminate these shadows from image sequences as a preprocessing stage for robust video surveillance, we propose a framework based on the idea of intrinsic images. Unlike previous methods for deriving intrinsic images, we derive time-varying reflectance images and corresponding illumination images from a sequence of images. Using obtained illumination images, we normalize the input image sequence in terms of incident lighting distribution to eliminate shadow effects. We also propose an illumination normalization scheme which can potentially run in real time, utilizing the illumination eigenspace, which captures the illumination variation due to weather, time of day etc., and a shadow interpolation method based on shadow hulls. This paper describes the theory of the framework with simulation results, and shows its effectiveness with object tracking results on real scene data sets for traffic monitoring. 1
Ground-truth dataset and baseline evaluations for intrinsic image algorithms
- In ICCV
, 2009
"... The intrinsic image decomposition aims to retrieve “intrinsic” properties of an image, such as shading and reflectance. To make it possible to quantitatively compare different approaches to this problem in realistic settings, we present a ground-truth dataset of intrinsic image decompositions for a ..."
Abstract
-
Cited by 43 (0 self)
- Add to MetaCart
(Show Context)
The intrinsic image decomposition aims to retrieve “intrinsic” properties of an image, such as shading and reflectance. To make it possible to quantitatively compare different approaches to this problem in realistic settings, we present a ground-truth dataset of intrinsic image decompositions for a variety of real-world objects. For each object, we separate an image of it into three components: Lambertian shading, reflectance, and specularities. We use our dataset to quantitatively compare several existing algorithms; we hope that this dataset will serve as a means for evaluating future work on intrinsic images. 1.
User-assisted intrinsic images
- ACM TRANSACTIONS ON GRAPHICS (SIGGRAPH ASIA
, 2009
"... For many computational photography applications, the lighting and materials in the scene are critical pieces of information. We seek to obtain intrinsic images, which decompose a photo into the product of an illumination component that represents lighting effects and a reflectance component that i ..."
Abstract
-
Cited by 40 (5 self)
- Add to MetaCart
For many computational photography applications, the lighting and materials in the scene are critical pieces of information. We seek to obtain intrinsic images, which decompose a photo into the product of an illumination component that represents lighting effects and a reflectance component that is the color of the observed material. This is an under-constrained problem and automatic methods are challenged by complex natural images. We describe a new approach that enables users to guide an optimization with simple indications such as regions of constant reflectance or illumination. Based on a simple assumption on local reflectance distributions, we derive a new propagation energy that enables a closed form solution using linear least-squares. We achieve fast performance by introducing a novel downsampling that preserves local color distributions. We demonstrate intrinsic image decomposition on a variety of images and show applications.