Results 1 - 10
of
354
Convex multi-task feature learning
- MACHINE LEARNING
, 2007
"... We present a method for learning sparse representations shared across multiple tasks. This method is a generalization of the well-known single-task 1-norm regularization. It is based on a novel non-convex regularizer which controls the number of learned features common across the tasks. We prove th ..."
Abstract
-
Cited by 258 (25 self)
- Add to MetaCart
(Show Context)
We present a method for learning sparse representations shared across multiple tasks. This method is a generalization of the well-known single-task 1-norm regularization. It is based on a novel non-convex regularizer which controls the number of learned features common across the tasks. We prove that the method is equivalent to solving a convex optimization problem for which there is an iterative algorithm which converges to an optimal solution. The algorithm has a simple interpretation: it alternately performs a supervised and an unsupervised step, where in the former step it learns task-specific functions and in the latter step it learns common-across-tasks sparse representations for these functions. We also provide an extension of the algorithm which learns sparse nonlinear representations using kernels. We report experiments on simulated and real data sets which demonstrate that the proposed method can both improve the performance relative to learning each task independently and lead to a few learned features common across related tasks. Our algorithm can also be used, as a special case, to simply select – not learn – a few common variables across the tasks.
Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations
- IEEE Trans. Pattern Analysis and Machine Intelligence
, 2007
"... Abstract—We address the problem of comparing sets of images for object recognition, where the sets may represent variations in an object’s appearance due to changing camera pose and lighting conditions. Canonical Correlations (also known as principal or canonical angles), which can be thought of as ..."
Abstract
-
Cited by 130 (11 self)
- Add to MetaCart
(Show Context)
Abstract—We address the problem of comparing sets of images for object recognition, where the sets may represent variations in an object’s appearance due to changing camera pose and lighting conditions. Canonical Correlations (also known as principal or canonical angles), which can be thought of as the angles between two d-dimensional subspaces, have recently attracted attention for image set matching. Canonical correlations offer many benefits in accuracy, efficiency, and robustness compared to the two main classical methods: parametric distribution-based and nonparametric sample-based matching of sets. Here, this is first demonstrated experimentally for reasonably sized data sets using existing methods exploiting canonical correlations. Motivated by their proven effectiveness, a novel discriminative learning method over sets is proposed for set classification. Specifically, inspired by classical Linear Discriminant Analysis (LDA), we develop a linear discriminant function that maximizes the canonical correlations of within-class sets and minimizes the canonical correlations of between-class sets. Image sets transformed by the discriminant function are then compared by the canonical correlations. Classical orthogonal subspace method (OSM) is also investigated for the similar purpose and compared with the proposed method. The proposed method is evaluated on various object recognition problems using face image sets with arbitrary motion captured under different illuminations and image sets of 500 general objects taken at different views. The method is also applied to object category recognition using ETH-80 database. The proposed method is shown to outperform the state-of-the-art methods in terms of accuracy and efficiency. Index Terms—Object recognition, face recognition, image sets, canonical correlation, principal angles, canonical correlation analysis, linear discriminant analysis, orthogonal subspace method. Ç 1
Learning Bilingual Lexicons from Monolingual Corpora
"... We present a method for learning bilingual translation lexicons from monolingual corpora. Word types in each language are characterized by purely monolingual features, such as context counts and orthographic substrings. Translations are induced using a generative model based on canonical correlation ..."
Abstract
-
Cited by 117 (1 self)
- Add to MetaCart
We present a method for learning bilingual translation lexicons from monolingual corpora. Word types in each language are characterized by purely monolingual features, such as context counts and orthographic substrings. Translations are induced using a generative model based on canonical correlation analysis, which explains the monolingual lexicons in terms of latent matchings. We show that high-precision lexicons can be learned in a variety of language pairs and from a range of corpus types. 1
R.: Tensor Canonical Correlation Analysis for Action Classification
- In: CVPR (2007
, 2007
"... We introduce a new framework, namely Tensor Canonical Correlation Analysis (TCCA) which is an extension of classical Canonical Correlation Analysis (CCA) to multidimensional data arrays (or tensors) and apply this for action/gesture classification in videos. By Tensor CCA, joint space-time linear re ..."
Abstract
-
Cited by 76 (6 self)
- Add to MetaCart
(Show Context)
We introduce a new framework, namely Tensor Canonical Correlation Analysis (TCCA) which is an extension of classical Canonical Correlation Analysis (CCA) to multidimensional data arrays (or tensors) and apply this for action/gesture classification in videos. By Tensor CCA, joint space-time linear relationships of two video volumes are inspected to yield flexible and descriptive similarity features of the two videos. The TCCA features are combined with a discriminative feature selection scheme and a Nearest Neighbor classifier for action classification. In addition, we propose a time-efficient action detection method based on dynamic learning of subspaces for Tensor CCA for the case that actions are not aligned in the space-time domain. The proposed method delivered significantly better accuracy and comparable detection speed over state-of-the-art methods on the KTH action data set as well as self-recorded hand gesture data sets. 1.
Multimodal deep learning.
- In ICML.
, 2011
"... Abstract Deep networks have been successfully applied to unsupervised feature learning for single modalities (e.g., text, images or audio). In this work, we propose a novel application of deep networks to learn features over multiple modalities. We present a series of tasks for multimodal learning ..."
Abstract
-
Cited by 71 (4 self)
- Add to MetaCart
Abstract Deep networks have been successfully applied to unsupervised feature learning for single modalities (e.g., text, images or audio). In this work, we propose a novel application of deep networks to learn features over multiple modalities. We present a series of tasks for multimodal learning and show how to train a deep network that learns features to address these tasks. In particular, we demonstrate cross modality feature learning, where better features for one modality (e.g., video) can be learned if multiple modalities (e.g., audio and video) are present at feature learning time. Furthermore, we show how to learn a shared representation between modalities and evaluate it on a unique task, where the classifier is trained with audio-only data but tested with video-only data and vice-versa. We validate our methods on the CUAVE and AVLetters datasets with an audio-visual speech classification task, demonstrating superior visual speech classification on AVLetters and effective multimodal fusion.
Two view learning: SVM-2K, theory and practice.
- Advances in Neural Information Processing Systems,
, 2005
"... Abstract Kernel methods make it relatively easy to define complex highdimensional feature spaces. This raises the question of how we can identify the relevant subspaces for a particular learning task. When two views of the same phenomenon are available kernel Canonical Correlation Analysis (KCCA) h ..."
Abstract
-
Cited by 59 (7 self)
- Add to MetaCart
(Show Context)
Abstract Kernel methods make it relatively easy to define complex highdimensional feature spaces. This raises the question of how we can identify the relevant subspaces for a particular learning task. When two views of the same phenomenon are available kernel Canonical Correlation Analysis (KCCA) has been shown to be an effective preprocessing step that can improve the performance of classification algorithms such as the Support Vector Machine (SVM). This paper takes this observation to its logical conclusion and proposes a method that combines this two stage learning (KCCA followed by SVM) into a single optimisation termed SVM-2K. We present both experimental and theoretical analysis of the approach showing encouraging results and insights.
Canonical correlation analysis of video volume tensors for action categorization and detection
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2009
"... Abstract—This paper addresses a spatiotemporal pattern recognition problem. The main purpose of this study is to find a right representation and matching of action video volumes for categorization. A novel method is proposed to measure video-to-video volume similarity by extending Canonical Correlat ..."
Abstract
-
Cited by 58 (0 self)
- Add to MetaCart
(Show Context)
Abstract—This paper addresses a spatiotemporal pattern recognition problem. The main purpose of this study is to find a right representation and matching of action video volumes for categorization. A novel method is proposed to measure video-to-video volume similarity by extending Canonical Correlation Analysis (CCA), a principled tool to inspect linear relations between two sets of vectors, to that of two multiway data arrays (or tensors). The proposed method analyzes video volumes as inputs avoiding the difficult problem of explicit motion estimation required in traditional methods and provides a way of spatiotemporal pattern matching that is robust to intraclass variations of actions. The proposed matching is demonstrated for action classification by a simple Nearest Neighbor classifier. We, moreover, propose an automatic action detection method, which performs 3D window search over an input video with action exemplars. The search is speeded up by dynamic learning of subspaces in the proposed CCA. Experiments on a public action data set (KTH) and a self-recorded hand gesture data showed that the proposed method is significantly better than various state-ofthe-art methods with respect to accuracy. Our method has low time complexity and does not require any major tuning parameters. Index Terms—Action categorization, gesture recognition, canonical correlation analysis, tensor, action detection, incremental subspace learning, spatiotemporal pattern classification. Ç 1
Multi-view regression via canonical correlation analysis
- In Proc. of Conference on Learning Theory
, 2007
"... Abstract. In the multi-view regression problem, we have a regression problem where the input variable (which is a real vector) can be partitioned into two different views, where it is assumed that either view of the input is sufficient to make accurate predictions — this is essentially (a significan ..."
Abstract
-
Cited by 50 (7 self)
- Add to MetaCart
Abstract. In the multi-view regression problem, we have a regression problem where the input variable (which is a real vector) can be partitioned into two different views, where it is assumed that either view of the input is sufficient to make accurate predictions — this is essentially (a significantly weaker version of) the co-training assumption for the regression problem. We provide a semi-supervised algorithm which first uses unlabeled data to learn a norm (or, equivalently, a kernel) and then uses labeled data in a ridge regression algorithm (with this induced norm) to provide the predictor. The unlabeled data is used via canonical correlation analysis (CCA, which is a closely related to PCA for two random variables) to derive an appropriate norm over functions. We are able to characterize the intrinsic dimensionality of the subsequent ridge regression problem (which uses this norm) by the correlation coefficients provided by CCA in a rather simple expression. Interestingly, the norm used by the ridge regression algorithm is derived from CCA, unlike in standard kernel methods where a special apriori norm is assumed (i.e. a Banach space is assumed). We discuss how this result shows that unlabeled data can decrease the sample complexity. 1
Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics
"... The ability to associate images with natural language sentences that describe what is depicted in them is a hallmark of image understanding, and a prerequisite for applications such as sentence-based image search. In analogy to image search, we propose to frame sentence-based image annotation as the ..."
Abstract
-
Cited by 44 (2 self)
- Add to MetaCart
(Show Context)
The ability to associate images with natural language sentences that describe what is depicted in them is a hallmark of image understanding, and a prerequisite for applications such as sentence-based image search. In analogy to image search, we propose to frame sentence-based image annotation as the task of ranking a given pool of captions. We introduce a new benchmark collection for sentence-based image description and search, consisting of 8,000 images that are each paired with five different captions which provide clear descriptions of the salient entities and events. We introduce a number of systems that perform quite well on this task, even though they are only based on features that can be obtained with minimal supervision. Our results clearly indicate the importance of training on multiple captions per image, and of capturing syntactic (word order-based) and semantic features of these captions. We also perform an in-depth comparison of human and automatic evaluation metrics for this task, and propose strategies for collecting human judgments cheaply and on a very large scale, allowing us to augment our collection with additional relevance judgments of which captions describe which image. Our analysis shows that metrics that consider the ranked list of results for each query image or sentence are significantly more robust than metrics that are based on a single response per query. Moreover, our study suggests that the evaluation of ranking-based image description systems may be fully automated. 1.
Generalized correlation function: Definition, properties and application to blind equalization
- IEEE Transactions on Signal Processing
, 2006
"... Abstract—With an abundance of tools based on kernel methods and information theoretic learning, a void still exists in incorpo-rating both the time structure and the statistical distribution of the time series in the same functional measure. In this paper, a new generalized correlation measure is de ..."
Abstract
-
Cited by 43 (9 self)
- Add to MetaCart
(Show Context)
Abstract—With an abundance of tools based on kernel methods and information theoretic learning, a void still exists in incorpo-rating both the time structure and the statistical distribution of the time series in the same functional measure. In this paper, a new generalized correlation measure is developed that includes the in-formation of both the distribution and that of the time structure of a stochastic process. It is shown how this measure can be inter-preted from a kernel method as well as from an information theo-retic learning points of view, demonstrating some relevant proper-ties. To underscore the effectiveness of the new measure, a simple blind equalization problem is considered using a coded signal. Index Terms—Blind equalization, entropy, generalized corre-lation kernel, information theoretic learning, reproducing kernel Hilbert space (RKHS). I.