Results 1 - 10
of
206
Nonparametric Belief Propagation
- IN CVPR
, 2002
"... In applications of graphical models arising in fields such as computer vision, the hidden variables of interest are most naturally specified by continuous, non--Gaussian distributions. However, due to the limitations of existing inf#6F6F3 algorithms, it is of#]k necessary tof#3# coarse, ..."
Abstract
-
Cited by 279 (25 self)
- Add to MetaCart
In applications of graphical models arising in fields such as computer vision, the hidden variables of interest are most naturally specified by continuous, non--Gaussian distributions. However, due to the limitations of existing inf#6F6F3 algorithms, it is of#]k necessary tof#3# coarse, discrete approximations to such models. In this paper, we develop a nonparametric belief propagation (NBP) algorithm, which uses stochastic methods to propagate kernel--based approximations to the true continuous messages. Each NBP message update is based on an efficient sampling procedure which can accomodate an extremely broad class of potentialf#l3]k[[z3 allowing easy adaptation to new application areas. We validate our method using comparisons to continuous BP for Gaussian networks, and an application to the stereo vision problem.
Monocular Pedestrian Detection: Survey and Experiments
, 2008
"... Pedestrian detection is a rapidly evolving area in computer vision with key applications in intelligent vehicles, surveillance and advanced robotics. The objective of this paper is to provide an overview of the current state of the art from both methodological and experimental perspective. The first ..."
Abstract
-
Cited by 153 (13 self)
- Add to MetaCart
Pedestrian detection is a rapidly evolving area in computer vision with key applications in intelligent vehicles, surveillance and advanced robotics. The objective of this paper is to provide an overview of the current state of the art from both methodological and experimental perspective. The first part of the paper consists of a survey. We cover the main components of a pedestrian detection system and the underlying models. The second (and larger) part of the paper contains a corresponding experimental study. We consider a diverse set of state-of-the-art systems: wavelet-based AdaBoost cascade [74], HOG/linSVM [11], NN/LRF [75] and combined shape-texture detection [23]. Experiments are performed on an extensive dataset captured on-board a vehicle driving through urban environment. The dataset includes many thousands of training samples as well as a 27 minute test sequence involving more than 20000 images with annotated pedestrian locations. We consider a generic evaluation setting and one specific to pedestrian detection on-board a vehicle. Results indicate a clear advantage of HOG/linSVM at higher image resolutions and lower processing speeds, and a superiority of the wavelet-based AdaBoost cascade approach at lower image resolutions and (near) real-time processing speeds. The dataset (8.5GB) is made public for benchmarking purposes.
Global data association for multi-object tracking using network flows
- In CVPR
, 2008
"... We propose a network flow based optimization method for data association needed for multiple object tracking. The maximum-a-posteriori (MAP) data association problem is mapped into a cost-flow network with a non-overlap constraint on trajectories. The optimal data association is found by a min-cost ..."
Abstract
-
Cited by 145 (1 self)
- Add to MetaCart
(Show Context)
We propose a network flow based optimization method for data association needed for multiple object tracking. The maximum-a-posteriori (MAP) data association problem is mapped into a cost-flow network with a non-overlap constraint on trajectories. The optimal data association is found by a min-cost flow algorithm in the network. The network is augmented to include an Explicit Occlusion Model(EOM) to track with long-term inter-object occlusions. A solution to the EOM-based network is found by an iterative approach built upon the original algorithm. Initialization and termination of trajectories and potential false observations are modeled by the formulation intrinsically. The method is efficient and does not require hypotheses pruning. Performance is compared with previous results on two public pedestrian datasets to show its improvement. 1.
Multiple Object Tracking using K-Shortest Paths Optimization
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2011
"... Multi-object tracking can be achieved by detecting objects in individual frames and then linking detections across frames. Such an approach can be made very robust to the occasional detection failure: If an object is not detected in a frame but is in previous and following ones, a correct trajectory ..."
Abstract
-
Cited by 123 (6 self)
- Add to MetaCart
Multi-object tracking can be achieved by detecting objects in individual frames and then linking detections across frames. Such an approach can be made very robust to the occasional detection failure: If an object is not detected in a frame but is in previous and following ones, a correct trajectory will nevertheless be produced. By contrast, a false-positive detection in a few frames will be ignored. However, when dealing with a multiple target problem, the linking step results in a difficult optimization problem in the space of all possible families of trajectories. This is usually dealt with by sampling or greedy search based on variants of Dynamic Programming, which can easily miss the global optimum. In this paper, we show that reformulating that step as a constrained flow optimization results in a convex problem. We take advantage of its particular structure to solve it using the k-shortest paths algorithm, which is very fast. This new approach is far simpler formally and algorithmically than existing techniques and lets us demonstrate excellent performance in two very different contexts.
Visual Tracking Decomposition
- in CVPR
, 2010
"... We propose a novel tracking algorithm that can work robustly in a challenging scenario such that several kinds of appearance and motion changes of an object occur at the same time. Our algorithm is based on a visual tracking decomposition scheme for the efficient design of observation and motion mod ..."
Abstract
-
Cited by 120 (5 self)
- Add to MetaCart
(Show Context)
We propose a novel tracking algorithm that can work robustly in a challenging scenario such that several kinds of appearance and motion changes of an object occur at the same time. Our algorithm is based on a visual tracking decomposition scheme for the efficient design of observation and motion models as well as trackers. In our scheme, the observation model is decomposed into multiple basic observation models that are constructed by sparse principal component analysis (SPCA) of a set of feature templates. Each basic observation model covers a specific appearance of the object. The motion model is also represented by the combination of multiple basic motion models, each of which covers a different type of motion. Then the multiple basic trackers are designed by associating the basic observation models and the basic motion models, so that each specific tracker takes charge of a certain change in the object. All basic trackers are then integrated into one compound tracker through an interactive Markov Chain Monte Carlo (IMCMC) framework in which the basic trackers communicate with one another interactively while run in parallel. By exchanging information with others, each tracker further improves its performance, which results in increasing the whole performance of tracking. Experimental results show that our method tracks the object accurately and reliably in realistic videos where the appearance and motion are drastically changing over time. 1.
Learning to associate: Hybridboosted multi-target tracker for crowded scene
- In CVPR
, 2009
"... We propose a learning-based hierarchical approach of multi-target tracking from a single camera by progressively associating detection responses into longer and longer track fragments (tracklets) and finally the desired target trajectories. To define tracklet affinity for association, most previous ..."
Abstract
-
Cited by 89 (3 self)
- Add to MetaCart
(Show Context)
We propose a learning-based hierarchical approach of multi-target tracking from a single camera by progressively associating detection responses into longer and longer track fragments (tracklets) and finally the desired target trajectories. To define tracklet affinity for association, most previous work relies on heuristically selected parametric models; while our approach is able to automatically select among various features and corresponding non-parametric models, and combine them to maximize the discriminative power on training data by virtue of a HybridBoost algorithm. A hybrid loss function is used in this algorithm because the association of tracklet is formulated as a joint problem of ranking and classification: the ranking part aims to rank correct tracklet associations higher than other alternatives; the classification part is responsible to reject wrong associations when no further association should be done. Experiments are carried out by tracking pedestrians in challenging datasets. We compare our approach with state-of-the-art algorithms to show its improvement in terms of tracking accuracy. 1.
Online Multi-Person Trackingby-Detection from a Single, Uncalibrated Camera
- PAMI
, 2010
"... In this paper, we address the problem of automatically detecting and tracking a variable number of persons in complex scenes using a monocular, potentially moving, uncalibrated camera. We propose a novel approach for multi-person tracking-by-detection in a particle filtering framework. In addition ..."
Abstract
-
Cited by 78 (0 self)
- Add to MetaCart
In this paper, we address the problem of automatically detecting and tracking a variable number of persons in complex scenes using a monocular, potentially moving, uncalibrated camera. We propose a novel approach for multi-person tracking-by-detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence of pedestrian detectors and online trained, instance-specific classifiers as a graded observation model. Thus, generic object category knowledge is complemented by instance-specific information. The main contribution of this paper is to explore how these unreliable information sources can be used for robust multi-person tracking. The algorithm detects and tracks a large number of dynamically moving persons in complex scenes with occlusions, does not rely on background modeling, requires no camera or ground plane calibration, and only makes use of information from the past. Hence, it imposes very few restrictions and is suitable for online applications. Our experiments show that the method yields good tracking performance in a large variety of highly dynamic scenarios, such as typical surveillance videos, webcam footage, or sports sequences. We demonstrate that our algorithm outperforms other methods that rely on additional information. Furthermore, we analyze the influence of different algorithm components on the robustness.
Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms
- in SenSys ’06: Proc. 4th Internat. Conf. on Embedded Networked Sensor Systems, 2006
, 2006
"... We explore fundamental performance limits of tracking a target in a two-dimensional field of binary proximity sensors, and design algorithms that attain those limits. In particular, using geometric and probabilistic analysis of an idealized model, we prove that the achievable spatial resolution Δ in ..."
Abstract
-
Cited by 76 (6 self)
- Add to MetaCart
(Show Context)
We explore fundamental performance limits of tracking a target in a two-dimensional field of binary proximity sensors, and design algorithms that attain those limits. In particular, using geometric and probabilistic analysis of an idealized model, we prove that the achievable spatial resolution Δ in localizing a target’s trajectory is of the order of 1 ρR, where R is the sensing radius and ρ is the sensor density per unit area. Using an Occam’s razor approach, we then design a geometric algorithm for computing an economical (in descriptive complexity) piecewise linear path that approximates the trajectory within this fundamental limit of accuracy. We employ analogies between binary sensing and sampling theory to contend that only a “lowpass ” approximation of the trajectory is attainable, and explore the implications of this observation for estimating the target’s velocity. We show through simulation the effectiveness of the geometric algorithm in tracking both the trajectory and the velocity of the target for idealized models. For non-ideal sensors exhibiting sensing errors, the geometric algorithm can yield poor performance. We show that non-idealities can be handled well using a particle filter based approach, and that geometric post-processing of the output of the Particle Filter algorithm yields an economical path description as in the idealized setting. Finally, we report on our lab-scale experiments using motes with acoustic sensors to validate our theoretical and simulation results.
Tracking Multiple People under Global Appearance Constraints
, 2011
"... In this paper, we show that tracking multiple people whose paths may intersect can be formulated as a convex global optimization problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available a ..."
Abstract
-
Cited by 66 (7 self)
- Add to MetaCart
In this paper, we show that tracking multiple people whose paths may intersect can be formulated as a convex global optimization problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on appearance being exploitable from frame to frame. We validate our approach on three multi-camera sport and pedestrian datasets that contain long and complex sequences. Our algorithm perseveres identities better than state-of-the-art algorithms while keeping similar MOTA scores.
Approximate Bayesian Multibody Tracking
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2006
"... Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting prin-cipled occlusion reasoning have been proposed but are yet unpractical for online applications. This pape ..."
Abstract
-
Cited by 65 (8 self)
- Add to MetaCart
(Show Context)
Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting prin-cipled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The Hybrid Joint-Separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in case of complete occlusion tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust and able to resolve long term occlusions between targets with identical appearance.