Results 1 - 10
of
551
Image retrieval: ideas, influences, and trends of the new age
- ACM COMPUTING SURVEYS
, 2008
"... We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger ass ..."
Abstract
-
Cited by 485 (13 self)
- Add to MetaCart
(Show Context)
We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.
Support vector machine active learning for image retrieval
, 2001
"... Relevance feedback is often a critical component when designing image databases. With these databases it is difficult to specify queries directly and explicitly. Relevance feedback interactively determinines a user’s desired output or query concept by asking the user whether certain proposed images ..."
Abstract
-
Cited by 456 (28 self)
- Add to MetaCart
(Show Context)
Relevance feedback is often a critical component when designing image databases. With these databases it is difficult to specify queries directly and explicitly. Relevance feedback interactively determinines a user’s desired output or query concept by asking the user whether certain proposed images are relevant or not. For a relevance feedback algorithm to be effective, it must grasp a user’s query concept accurately and quickly, while also only asking the user to label a small number of images. We propose the use of a support vector machine active learning algorithm for conducting effective relevance feedback for image retrieval. The algorithm selects the most informative images to query a user and quickly learns a boundary that separates the images that satisfy the user’s query concept from the rest of the dataset. Experimental results show that our algorithm achieves significantly higher search accuracy than traditional query refinement schemes after just three to four rounds of relevance feedback.
Automatic linguistic indexing of pictures by a statistical modeling approach
- PAMI
"... Automatic linguistic indexing of pictures is an important but highly challenging problem for researchers in computer vision and content-based image retrieval. In this paper, we introduce a statistical modeling approach to this problem. Categorized images are used to train a dictionary of hundreds of ..."
Abstract
-
Cited by 300 (25 self)
- Add to MetaCart
(Show Context)
Automatic linguistic indexing of pictures is an important but highly challenging problem for researchers in computer vision and content-based image retrieval. In this paper, we introduce a statistical modeling approach to this problem. Categorized images are used to train a dictionary of hundreds of statistical models each representing a concept. Images of any given concept are regarded as instances of a stochastic process that characterizes the concept. To measure the extent of association between an image and the textual description of a concept, the likelihood of the occurrence of the image based on the characterizing stochastic process is computed. A high likelihood indicates a strong association. In our experimental implementation, we focus on a particular group of stochastic processes, that is, the two-dimensional multiresolution hidden Markov models (2-D MHMMs). We implemented and tested our ALIP (Automatic Linguistic Indexing of Pictures) system on a photographic image database of 600 dierent concepts, each with about 40 training images. The system is evaluated quantitatively using more than 4,600 images outside the training database and compared with a random annotation scheme. Exper-iments have demonstrated the good accuracy of the system and its high potential in linguistic indexing of photographic images. Index Terms { Content-based image retrieval, image classication, hidden Markov model, computer vision, statistical learning, wavelets. 1
Learning the Semantics of Words and Pictures
, 2000
"... We present a statistical model for organizing image collections which integrates semantic information provided by associated text and visual information provided by image features. The model is very promising for information retrieval tasks such as database browsing and searching for images based on ..."
Abstract
-
Cited by 274 (12 self)
- Add to MetaCart
We present a statistical model for organizing image collections which integrates semantic information provided by associated text and visual information provided by image features. The model is very promising for information retrieval tasks such as database browsing and searching for images based on text and/or image features. Furthermore, since the model learns relationships between text and image features, it can be used for novel applications such as associating words with pictures, and unsupervised learning for object recognition. 1.
Image Categorization by Learning and Reasoning with Regions
- Journal of Machine Learning Research
, 2004
"... Designing computer programs to automatically categorize images using low-level features is a challenging research topic in computer vision. In this paper, we present a new learning technique, which extends Multiple-Instance Learning (MIL), and its application to the problem of region-based image cat ..."
Abstract
-
Cited by 195 (11 self)
- Add to MetaCart
Designing computer programs to automatically categorize images using low-level features is a challenging research topic in computer vision. In this paper, we present a new learning technique, which extends Multiple-Instance Learning (MIL), and its application to the problem of region-based image categorization. Images are viewed as bags, each of which contains a number of instances corresponding to regions obtained from image segmentation. The standard MIL problem assumes that a bag is labeled positive if at least one of its instances is positive; otherwise, the bag is negative.
A.Blake. Cosegmentation of image pairs by histogram matching - incorporating a global constraint into MRFs
- In CVPR
, 2006
"... We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an MRF term encoding spatial coherency and a global constraint whi ..."
Abstract
-
Cited by 176 (3 self)
- Add to MetaCart
(Show Context)
We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an MRF term encoding spatial coherency and a global constraint which attempts to match the appearance histograms of the common parts. This energy has not been proposed previously and its optimization is challenging and NP-hard. For this problem a novel optimization scheme which we call trust region graph cuts is presented. We demonstrate that this framework has the potential to improve a wide range of research: Object driven image retrieval, video tracking and segmentation, and interactive image editing. The power of the framework lies in its generality, the common part can be a rigid/non-rigid object (or scene), observed from different viewpoints or even similar objects of the same class. 1.
A survey of content-based image retrieval with high-level semantics
, 2007
"... In order to improve the retrieval accuracy of content-based image retrieval systems, research focus has been shifted from designing sophisticated low-level feature extraction algorithms to reducing the ‘semantic gap ’ between the visual features and the richness of human semantics. This paper attemp ..."
Abstract
-
Cited by 150 (5 self)
- Add to MetaCart
In order to improve the retrieval accuracy of content-based image retrieval systems, research focus has been shifted from designing sophisticated low-level feature extraction algorithms to reducing the ‘semantic gap ’ between the visual features and the richness of human semantics. This paper attempts to provide a comprehensive survey of the recent technical achievements in high-level semantic-based image retrieval. Major recent publications are included in this survey covering different aspects of the research in this area, including low-level image feature extraction, similarity measurement, and deriving high-level semantic features. We identify five major categories of the state-of-the-art techniques in narrowing down the ‘semantic gap’: (1) using object ontology to define high-level concepts; (2) using machine learning methods to associate low-level features with query concepts; (3) using relevance feedback to learn users’ intention; (4) generating semantic template to support high-level image retrieval; (5) fusing the evidences from HTML text and the visual content of images for WWW image retrieval. In addition, some other related issues such as image test bed and retrieval performance evaluation are also discussed. Finally, based on existing technology and the demand from real-world applications, a few promising future research directions are suggested.
Cbsa: Contentbased soft annotation for multimodal image retrieval using bayes point machines.
- IEEE Trans. on Circuits and Systems for Video Technology,
, 2003
"... ..."
Studying aesthetics in photographic images using a computational approach
- In Proc. ECCV
, 2006
"... Abstract. Aesthetics, in the world of art and photography, refers to the principles of the nature and appreciation of beauty. Judging beauty and other aesthetic qualities of photographs is a highly subjective task. Hence, there is no unanimously agreed standard for measuring aesthetic value. In spit ..."
Abstract
-
Cited by 131 (11 self)
- Add to MetaCart
(Show Context)
Abstract. Aesthetics, in the world of art and photography, refers to the principles of the nature and appreciation of beauty. Judging beauty and other aesthetic qualities of photographs is a highly subjective task. Hence, there is no unanimously agreed standard for measuring aesthetic value. In spite of the lack of firm rules, certain features in photographic images are believed, by many, to please humans more than certain others. In this paper, we treat the challenge of automatically inferring aesthetic quality of pictures using their visual content as a machine learning problem, with a peer-rated online photo sharing Website as data source. We extract certain visual features based on the intuition that they can discriminate between aesthetically pleasing and displeasing images. Automated classifiers are built using support vector machines and classification trees. Linear regression on polynomial terms of the features is also applied to infer numerical aesthetics ratings. The work attempts to explore the relationship between emotions which pictures arouse in people, and their low-level content. Potential applications include content-based image retrieval and digital photography. 1