Results 1 - 10
of
426
Query evaluation techniques for large databases
- ACM COMPUTING SURVEYS
, 1993
"... Database management systems will continue to manage large data volumes. Thus, efficient algorithms for accessing and manipulating large sets and sequences will be required to provide acceptable performance. The advent of object-oriented and extensible database systems will not solve this problem. On ..."
Abstract
-
Cited by 767 (11 self)
- Add to MetaCart
Database management systems will continue to manage large data volumes. Thus, efficient algorithms for accessing and manipulating large sets and sequences will be required to provide acceptable performance. The advent of object-oriented and extensible database systems will not solve this problem. On the contrary, modern data models exacerbate it: In order to manipulate large sets of complex objects as efficiently as today’s database systems manipulate simple records, query processing algorithms and software will become more complex, and a solid understanding of algorithm and architectural issues is essential for the designer of database management software. This survey provides a foundation for the design and implementation of query execution facilities in new database management systems. It describes a wide array of practical query evaluation techniques for both relational and post-relational database systems, including iterative execution of complex query evaluation plans, the duality of sort- and hash-based set matching algorithms, types of parallel query execution and their implementation, and special operators for emerging database application domains.
Multidimensional Access Methods
, 1998
"... Search operations in databases require special support at the physical level. This is true for conventional databases as well as spatial databases, where typical search operations include the point query (find all objects that contain a given search point) and the region query (find all objects that ..."
Abstract
-
Cited by 686 (3 self)
- Add to MetaCart
Search operations in databases require special support at the physical level. This is true for conventional databases as well as spatial databases, where typical search operations include the point query (find all objects that contain a given search point) and the region query (find all objects that overlap a given search region).
A quantitative analysis and performance study for similarity-search methods in high dimensional spaces, in:
- Proceedings of the 24th VLDB International Conference on Very Large Data Bases,
, 1998
"... ..."
The quadtree and related hierarchical data structures
- ACM Computing Surveys
, 1984
"... A tutorial survey is presented of the quadtree and related hierarchical data structures. They are based on the principle of recursive decomposition. The emphasis is on the representation of data used in applications in image processing, computer graphics, geographic information systems, and robotics ..."
Abstract
-
Cited by 541 (12 self)
- Add to MetaCart
A tutorial survey is presented of the quadtree and related hierarchical data structures. They are based on the principle of recursive decomposition. The emphasis is on the representation of data used in applications in image processing, computer graphics, geographic information systems, and robotics. There is a greater emphasis on region data (i.e., two-dimensional shapes) and to a lesser extent on point, curvilinear, and threedimensional data. A number of operations in which such data structures find use are examined in greater detail.
Fast subsequence matching in time-series databases
- PROCEEDINGS OF THE 1994 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 1994
"... We present an efficient indexing method to locate 1-dimensional subsequences within a collection of sequences, such that the subsequences match a given (query) pattern within a specified tolerance. The idea is to map each data sequence into a small set of multidimensional rectangles in feature space ..."
Abstract
-
Cited by 533 (24 self)
- Add to MetaCart
We present an efficient indexing method to locate 1-dimensional subsequences within a collection of sequences, such that the subsequences match a given (query) pattern within a specified tolerance. The idea is to map each data sequence into a small set of multidimensional rectangles in feature space. Then, these rectangles can be readily indexed using traditional spatial access methods, like the R*-tree [9]. In more detail, we use a sliding window over the data sequence and extract its features; the result is a trail in feature space. We propose an ecient and eective algorithm to divide such trails into sub-trails, which are subsequently represented by their Minimum Bounding Rectangles (MBRs). We also examine queries of varying lengths, and we show how to handle each case efficiently. We implemented our method and carried out experiments on synthetic and real data (stock price movements). We compared the method to sequential scanning, which is the only obvious competitor. The results were excellent: our method accelerated the search time from 3 times up to 100 times.
Efficient and Effective Querying by Image Content
- Journal of Intelligent Information Systems
, 1994
"... In the QBIC (Query By Image Content) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include med ..."
Abstract
-
Cited by 503 (13 self)
- Add to MetaCart
(Show Context)
In the QBIC (Query By Image Content) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical ("Give me other images that contain a tumor with a texture like this one"), photo-journalism ("Give me images that have blue at the top and red at the bottom"), and many others in art, fashion, cataloging, retailing, and industry. We describe a set of novel features and similarity measures allowing query by color, texture, and shape of image object. We demonstrate the effectiveness of the QBIC system with normalized precision and recall experiments on test databases containing over 1000 images and 1000 objects populated from commercially available photo clip art images, and of images of airplane silhouettes. We also consider the efficient indexing of these features, specifically addre...
Efficient Processing of Spatial Joins Using R-Trees
, 1993
"... Abstract: In this paper, we show that spatial joins are very suitable to be processed on a parallel hardware platform. The parallel system is equipped with a so-called shared virtual memory which is well-suited for the design and implementation of parallel spatial join algorithms. We start with an a ..."
Abstract
-
Cited by 363 (14 self)
- Add to MetaCart
Abstract: In this paper, we show that spatial joins are very suitable to be processed on a parallel hardware platform. The parallel system is equipped with a so-called shared virtual memory which is well-suited for the design and implementation of parallel spatial join algorithms. We start with an algorithm that consists of three phases: task creation, task assignment and parallel task execu-tion. In order to reduce CPU- and I/O-cost, the three phases are processed in a fashion that pre-serves spatial locality. Dynamic load balancing is achieved by splitting tasks into smaller ones and reassigning some of the smaller tasks to idle processors. In an experimental performance compar-ison, we identify the advantages and disadvantages of several variants of our algorithm. The most efficient one shows an almost optimal speed-up under the assumption that the number of disks is sufficiently large. Topics: spatial database systems, parallel database systems 1
Similarity Indexing with the SS-tree
- In Proceedings of the 12th International Conference on Data Engineering
, 1996
"... jain0ece.ucsd.edu ..."
The R+-tree: A dynamic index for multi-dimensional objects
- PROC. 13TH VLDB CONF
, 1987
"... The problem of indexing multidimensional objects is considered. First, a classification of existing methods is given along with a discussion of the major issues involved in multidimensional data indexing. Second, a variation to Guttman’s R-trees (R +-trees) that avoids overlapping rectangles in inte ..."
Abstract
-
Cited by 345 (19 self)
- Add to MetaCart
The problem of indexing multidimensional objects is considered. First, a classification of existing methods is given along with a discussion of the major issues involved in multidimensional data indexing. Second, a variation to Guttman’s R-trees (R +-trees) that avoids overlapping rectangles in intermediate nodes of the tree is introduced. Algorithms for searching, updating, initial packing and reorganization of the structure are discussed in detail. Finally, we provide analytical results indicating that R +-trees achieve up to 50 % savings in disk accesses compared to an R-tree when searching files of thousands of rectangles.
Spatial Data Structures
, 1995
"... An overview is presented of the use of spatial data structures in spatial databases. The focus is on hierarchical data structures, including a number of variants of quadtrees, which sort the data with respect to the space occupied by it. Suchtechniques are known as spatial indexing methods. Hierarch ..."
Abstract
-
Cited by 333 (13 self)
- Add to MetaCart
An overview is presented of the use of spatial data structures in spatial databases. The focus is on hierarchical data structures, including a number of variants of quadtrees, which sort the data with respect to the space occupied by it. Suchtechniques are known as spatial indexing methods. Hierarchical data structures are based on the principle of recursive decomposition. They are attractive because they are compact and depending on the nature of the data they save space as well as time and also facilitate operations such as search. Examples are given of the use of these data structures in the representation of different data types such as regions, points, rectangles, lines, and volumes.