Results 1  10
of
56,584
Practical Byzantine fault tolerance
, 1999
"... This paper describes a new replication algorithm that is able to tolerate Byzantine faults. We believe that Byzantinefaulttolerant algorithms will be increasingly important in the future because malicious attacks and software errors are increasingly common and can cause faulty nodes to exhibit arbi ..."
Abstract

Cited by 673 (15 self)
 Add to MetaCart
arbitrary behavior. Whereas previous algorithms assumed a synchronous system or were too slow to be used in practice, the algorithm described in this paper is practical: it works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time
The geometry of algorithms with orthogonality constraints
 SIAM J. MATRIX ANAL. APPL
, 1998
"... In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal proces ..."
Abstract

Cited by 640 (1 self)
 Add to MetaCart
of previously unrelated algorithms. It is our hope that developers of new algorithms and perturbation theories will benefit from the theory, methods, and examples in this paper.
Linear pattern matching algorithms
 IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE
, 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear ti ..."
Abstract

Cited by 546 (0 self)
 Add to MetaCart
In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear
An Algorithm for Tracking Multiple Targets
 IEEE Transactions on Automatic Control
, 1979
"... Abstract—An algorithm for tracking multiple targets In a cluttered algorithms. Clustering is the process of dividing the entire environment Is developed. The algorithm Is capable of Initiating tracks, set of targets and measurements into independent groups accounting for false or m[~clngreports, and ..."
Abstract

Cited by 596 (0 self)
 Add to MetaCart
target, or that the measurement Is false. nally, it is desirable for an algorithm to be recursive so Target states are estimated from each such da*aas.soclatloo hypothesis that all the previous data do not have to be reprocessed using a 1C~InlQnfilter. As mere measurements are received, the probabill
Analysis of Recommendation Algorithms for ECommerce
, 2000
"... Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in ECommerce nowadays. In this paper, we investigate several techniques for analyzing largescale pu ..."
Abstract

Cited by 523 (22 self)
 Add to MetaCart
scale purchase and preference data for the purpose of producing useful recommendations to customers. In particular, we apply a collection of algorithms such as traditional data mining, nearestneighbor collaborative ltering, and dimensionality reduction on two dierent data sets. The rst data set was derived from
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1246 (5 self)
 Add to MetaCart
Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown
Dynamic programming algorithm optimization for spoken word recognition
 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING
, 1978
"... This paper reports on an optimum dynamic programming (DP) based timenormalization algorithm for spoken word recognition. First, a general principle of timenormalization is given using timewarping function. Then, two timenormalized distance definitions, ded symmetric and asymmetric forms, are der ..."
Abstract

Cited by 788 (3 self)
 Add to MetaCart
words in different The effective slope constraint characteristic is qualitatively analyzed, and the optimum slope constraint condition is determined through experiments. The optimized algorithm is then extensively subjected to experimentat comparison with various DPalgorithms, previously applied
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1211 (13 self)
 Add to MetaCart
the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
On the algorithmic implementation of multiclass kernelbased vector machines
 Journal of Machine Learning Research
"... In this paper we describe the algorithmic implementation of multiclass kernelbased vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic ob ..."
Abstract

Cited by 559 (13 self)
 Add to MetaCart
In this paper we describe the algorithmic implementation of multiclass kernelbased vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic
Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1999
"... Evolutionary algorithms (EA’s) are often wellsuited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a singl ..."
Abstract

Cited by 813 (22 self)
 Add to MetaCart
Evolutionary algorithms (EA’s) are often wellsuited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a
Results 1  10
of
56,584