Results 1  10
of
13,874
Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
 J. Geophys. Res
, 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract

Cited by 800 (23 self)
 Add to MetaCart
. The unbounded error growth found in the extended Kalman filter, which is caused by an overly simplified closure in the error covariance equation, is completely eliminated. Open boundaries can be handled as long as the ocean model is well posed. Wellknown numerical instabilities associated with the error
N Degrees of Separation: MultiDimensional Separation of Concerns
 IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 1999
"... Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a ..."
Abstract

Cited by 522 (8 self)
 Add to MetaCart
given formalism supports. The predominant methodologies and formalisms available, however, support only orthogonal separations of concerns, along single dimensions of composition and decomposition. These characteristics lead to a number of wellknown and difficult problems. This paper describes a new
Bagging predictors
, 1996
"... Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making ..."
Abstract

Cited by 3650 (1 self)
 Add to MetaCart
Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed
Large steps in cloth simulation
 SIGGRAPH 98 Conference Proceedings
, 1998
"... The bottleneck in most cloth simulation systems is that time steps must be small to avoid numerical instability. This paper describes a cloth simulation system that can stably take large time steps. The simulation system couples a new technique for enforcing constraints on individual cloth particle ..."
Abstract

Cited by 576 (5 self)
 Add to MetaCart
The bottleneck in most cloth simulation systems is that time steps must be small to avoid numerical instability. This paper describes a cloth simulation system that can stably take large time steps. The simulation system couples a new technique for enforcing constraints on individual cloth
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants.
 Machine Learning,
, 1999
"... Abstract. Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several vari ..."
Abstract

Cited by 707 (2 self)
 Add to MetaCart
algorithms are explored, including numerical instabilities and underflows. We use scatterplots that graphically show how AdaBoost reweights instances, emphasizing not only "hard" areas but also outliers and noise.
The Contourlet Transform: An Efficient Directional Multiresolution Image Representation
 IEEE TRANSACTIONS ON IMAGE PROCESSING
"... The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure t ..."
Abstract

Cited by 513 (20 self)
 Add to MetaCart
The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
. Introduction The task of calculating posterior marginals on nodes in an arbitrary Bayesian network is known to be NP hard In this paper we investigate the approximation performance of "loopy belief propagation". This refers to using the wellknown Pearl polytree algorithm [12] on a Bayesian network
An Efficient Solution to the FivePoint Relative Pose Problem
, 2004
"... An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degre ..."
Abstract

Cited by 484 (13 self)
 Add to MetaCart
degree polynomial in closed form and subsequently finding its roots. It is the first algorithm well suited for numerical implementation that also corresponds to the inherent complexity of the problem. We investigate the numerical precision of the algorithm. We also study its performance under noise
A scaled conjugate gradient algorithm for fast supervised learning
 NEURAL NETWORKS
, 1993
"... A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural netwo ..."
Abstract

Cited by 451 (0 self)
 Add to MetaCart
A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural
Hierarchical Modelling and Analysis for Spatial Data. Chapman and Hall/CRC,
, 2004
"... Abstract Often, there are two streams in statistical research one developed by practitioners and other by main stream statisticians. Development of geostatistics is a very good example where pioneering work under realistic assumptions came from mining engineers whereas it is only now that statisti ..."
Abstract

Cited by 442 (45 self)
 Add to MetaCart
that statistical framework is getting more transparent. The subject with statistical emphasis has been evolving, as seen by various excellent books from statistical sides (Banerjee, S., Introduction It is well known that the maximum likelihood (ML) method is a powerful statistical tool in estimation
Results 1  10
of
13,874