Results 1  10
of
1,286,974
Formal Ontology and Information Systems
, 1998
"... Research on ontology is becoming increasingly widespread in the computer science community, and its importance is being recognized in a multiplicity of research fields and application areas, including knowledge engineering, database design and integration, information retrieval and extraction. We sh ..."
Abstract

Cited by 878 (11 self)
 Add to MetaCart
Research on ontology is becoming increasingly widespread in the computer science community, and its importance is being recognized in a multiplicity of research fields and application areas, including knowledge engineering, database design and integration, information retrieval and extraction. We shall use the generic term information systems, in its broadest sense, to collectively refer to these application perspectives. We argue in this paper that socalled ontologies present their own methodological and architectural peculiarities: on the methodological side, their main peculiarity is the adoption of a highly interdisciplinary approach, while on the architectural side the most interesting aspect is the centrality of the role they can play in an information system, leading to the perspective of ontologydriven information systems.
A formal basis for architectural connection
 ACM TRANSACTIONS ON SOJIWARE ENGINEERING AND METHODOLOGY
, 1997
"... ..."
Statecharts: A Visual Formalism For Complex Systems
, 1987
"... We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discreteevent systems, such as multicomputer realtime systems, communication protocols and digital control units. Our diagrams, which we cal ..."
Abstract

Cited by 2683 (56 self)
 Add to MetaCart
We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discreteevent systems, such as multicomputer realtime systems, communication protocols and digital control units. Our diagrams, which we
N Degrees of Separation: MultiDimensional Separation of Concerns
 IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 1999
"... Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a ..."
Abstract

Cited by 514 (8 self)
 Add to MetaCart
given formalism supports. The predominant methodologies and formalisms available, however, support only orthogonal separations of concerns, along single dimensions of composition and decomposition. These characteristics lead to a number of wellknown and difficult problems. This paper describes a new
Notes On Formalizing Context
, 1993
"... These notes discuss formalizing contexts as first class objects. The basic relation is ist(c; p). It asserts that the proposition p is true in the context c. The most important formulas relate the propositions true in different contexts. Introducing contexts as formal objects will permit axiomatizat ..."
Abstract

Cited by 420 (9 self)
 Add to MetaCart
These notes discuss formalizing contexts as first class objects. The basic relation is ist(c; p). It asserts that the proposition p is true in the context c. The most important formulas relate the propositions true in different contexts. Introducing contexts as formal objects will permit
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 511 (8 self)
 Add to MetaCart
then almost surely all components in such graphs are small. We can apply these results to G n;p ; G n;M , and other wellknown models of random graphs. There are also applications related to the chromatic number of sparse random graphs.
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
of the original data. Wellknown linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes
Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
 J. Geophys. Res
, 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract

Cited by 782 (22 self)
 Add to MetaCart
. The unbounded error growth found in the extended Kalman filter, which is caused by an overly simplified closure in the error covariance equation, is completely eliminated. Open boundaries can be handled as long as the ocean model is well posed. Wellknown numerical instabilities associated with the error
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 619 (31 self)
 Add to MetaCart
objects. Although PRMs are significantly more expressive than standard models, such as Bayesian networks, we show how to extend wellknown statistical methods for learning Bayesian networks to learn these models. We describe both parameter estimation and structure learning — the automatic induction
Results 1  10
of
1,286,974