Results 1  10
of
10,928
The Contourlet Transform: An Efficient Directional Multiresolution Image Representation
 IEEE TRANSACTIONS ON IMAGE PROCESSING
"... The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure t ..."
Abstract

Cited by 513 (20 self)
 Add to MetaCart
The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1791 (69 self)
 Add to MetaCart
be derived as specific instances of the sumproduct algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform algorithms.
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
Abstract

Cited by 542 (2 self)
 Add to MetaCart
that require on the order of 100 seconds to render typical data sets on a workstation. Algorithms with optimizations that exploit coherence in the data have reduced rendering times to the range of ten seconds but are still not fast enough for interactive visualization applications. In this thesis we present a
Fast and robust fixedpoint algorithms for independent component analysis
 IEEE TRANS. NEURAL NETW
, 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract

Cited by 884 (34 self)
 Add to MetaCart
variance. Finally, we introduce simple fixedpoint algorithms for practical optimization of the contrast functions. These algorithms optimize the contrast functions very fast and reliably.
Factoring wavelet transforms into lifting steps
 J. FOURIER ANAL. APPL
, 1998
"... This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decompositio ..."
Abstract

Cited by 584 (8 self)
 Add to MetaCart
. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is wellknown to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We
InterBlock GPU Communication via Fast Barrier Synchronization
"... Abstract—While GPGPU stands for generalpurpose computation on graphics processing units, the lack of explicit support for interblock communication on the GPU arguably hampers its broader adoption as a generalpurpose computing device. Interblock communication on the GPU occurs via global memory an ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
synchronization: GPU lockbased synchronization and GPU lockfree synchronization. We then evaluate the efficacy of each approach via a microbenchmark as well as three wellknown algorithms — Fast Fourier Transform (FFT), dynamic programming, and bitonic sort. For the microbenchmark, the experimental results
FFTW: An Adaptive Software Architecture For The FFT
, 1998
"... FFT literature has been mostly concerned with minimizing the number of floatingpoint operations performed by an algorithm. Unfortunately, on presentday microprocessors this measure is far less important than it used to be, and interactions with the processor pipeline and the memory hierarchy have ..."
Abstract

Cited by 602 (4 self)
 Add to MetaCart
a larger impact on performance. Consequently, one must know the details of a computer architecture in order to design a fast algorithm. In this paper, we propose an adaptive FFT program that tunes the computation automatically for any particular hardware. We compared our program, called FFTW
The design and implementation of FFTW3
 PROCEEDINGS OF THE IEEE
, 2005
"... FFTW is an implementation of the discrete Fourier transform (DFT) that adapts to the hardware in order to maximize performance. This paper shows that such an approach can yield an implementation that is competitive with handoptimized libraries, and describes the software structure that makes our cu ..."
Abstract

Cited by 726 (3 self)
 Add to MetaCart
FFTW is an implementation of the discrete Fourier transform (DFT) that adapts to the hardware in order to maximize performance. This paper shows that such an approach can yield an implementation that is competitive with handoptimized libraries, and describes the software structure that makes our
A scaled conjugate gradient algorithm for fast supervised learning
 NEURAL NETWORKS
, 1993
"... A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural netwo ..."
Abstract

Cited by 451 (0 self)
 Add to MetaCart
A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural
Results 1  10
of
10,928