Results 1  10
of
1,169,256
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
A fast iterative shrinkagethresholding algorithm with application to . . .
, 2009
"... We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast Iterat ..."
Abstract

Cited by 1055 (8 self)
 Add to MetaCart
We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
hard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma
Discrete DifferentialGeometry Operators for Triangulated 2Manifolds
, 2002
"... This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Vorono ..."
Abstract

Cited by 453 (17 self)
 Add to MetaCart
This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Voronoi cells and the mixed FiniteElement/FiniteVolume method, and compare them to existing formulations. Building upon previous work in discrete geometry, these new operators are closely related to the continuous case, guaranteeing an appropriate extension from the continuous to the discrete setting: they respect most intrinsic properties of the continuous differential operators.
NEURAL EXCITABILITY, SPIKING AND BURSTING
, 2000
"... Bifurcation mechanisms involved in the generation of action potentials (spikes) by neurons are reviewed here. We show how the type of bifurcation determines the neurocomputational properties of the cells. For example, when the rest state is near a saddlenode bifurcation, the cell can fire allorn ..."
Abstract

Cited by 141 (4 self)
 Add to MetaCart
ornone spikes with an arbitrary low frequency, it has a welldefined threshold manifold, and it acts as an integrator; i.e. the higher the frequency of incoming pulses, the sooner it fires. In contrast, when the rest state is near an Andronov–Hopf bifurcation, the cell fires in a certain frequency range, its
Thresholding of statistical maps in functional neuroimaging using the false discovery rate
 Neuroimage
, 2002
"... Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a longstanding problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures for multi ..."
Abstract

Cited by 494 (8 self)
 Add to MetaCart
Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a longstanding problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures
Ricci Flow with Surgery on ThreeManifolds
"... This is a technical paper, which is a continuation of [I]. Here we verify most of the assertions, made in [I, §13]; the exceptions are (1) the statement that a 3manifold which collapses with local lower bound for sectional curvature is a graph manifold this is deferred to a separate paper, as the ..."
Abstract

Cited by 454 (2 self)
 Add to MetaCart
This is a technical paper, which is a continuation of [I]. Here we verify most of the assertions, made in [I, §13]; the exceptions are (1) the statement that a 3manifold which collapses with local lower bound for sectional curvature is a graph manifold this is deferred to a separate paper
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 537 (6 self)
 Add to MetaCart
maximumlikelihood framework, based on a specific form of Gaussian latent variable model. This leads to a welldefined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual
Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
 Advances in Neural Information Processing Systems 14
, 2001
"... Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher ..."
Abstract

Cited by 664 (8 self)
 Add to MetaCart
Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a
Results 1  10
of
1,169,256