Results 1  10
of
1,328,073
Weighted Spaces
"... abstract. We prove existence of a new type of positive solutions of the semilinear equation −∆u+u = up on Rn, where 1 < p < n+2n−2. These solutions are bounded, but do not tend to zero at infinity. Indeed, they decay to zero away from three halflines with a common origin, and their asymptotic ..."
Abstract
 Add to MetaCart
abstract. We prove existence of a new type of positive solutions of the semilinear equation −∆u+u = up on Rn, where 1 < p < n+2n−2. These solutions are bounded, but do not tend to zero at infinity. Indeed, they decay to zero away from three halflines with a common origin, and their asymptotic profile is periodic along these halflines.
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Explaining Away in Weight Space
, 2000
"... Explaining away has mostly been considered in terms of inference of states in belief networks. We show how it can also arise in a Bayesian context in inference about the weights governing relationships such as those between stimuli and reinforcers in conditioning experiments such as backward blo ..."
Abstract

Cited by 31 (2 self)
 Add to MetaCart
blocking. We show how explaining away in weight space can be accounted for using an extension of a Kalman filter model; provide a new approximate way of looking at the Kalman gain matrix as a whitener for the correlation matrix of the observation process; suggest a network implementation
Actions as spacetime shapes
 In ICCV
, 2005
"... Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes and genera ..."
Abstract

Cited by 642 (4 self)
 Add to MetaCart
Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes
Spacetime Interest Points
 IN ICCV
, 2003
"... Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can be use ..."
Abstract

Cited by 791 (22 self)
 Add to MetaCart
Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can be used for a compact representation of video data as well as for its interpretation.. To detect
Explaining Away in Weight Space
"... Explaining away has mostly been considered in terms of inference of states in belief networks. We show how it can also arise in a Bayesian context in inference about the weights governing relationships such as those between stimuli and reinforcers in conditioning experiments such as backward blo ..."
Abstract
 Add to MetaCart
blocking. We show how explaining away in weight space can be accounted for using an extension of a Kalman filter model; provide a new approximate way of looking at the Kalman gain matrix as a whitener for the correlation matrix of the observation process; suggest a network implementation
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 822 (10 self)
 Add to MetaCart
The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two nodes. The method is general and easy to implement. It can be applied to virtually any type of holonomic robot. It requires selecting certain parameters (e.g., the duration of the learning phase) whose values depend on the scene, that is the robot and its workspace. But these values turn out to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (=150 MIPS), after learning for relatively short periods of time (a few dozen seconds)
Representing twentieth century spacetime climate variability, part 1: development of a 196190 mean monthly terrestrial climatology
 Journal of Climate
, 1999
"... The construction of a 0.58 lat 3 0.58 long surface climatology of global land areas, excluding Antarctica, is described. The climatology represents the period 1961–90 and comprises a suite of nine variables: precipitation, wetday frequency, mean temperature, diurnal temperature range, vapor pressur ..."
Abstract

Cited by 551 (12 self)
 Add to MetaCart
The construction of a 0.58 lat 3 0.58 long surface climatology of global land areas, excluding Antarctica, is described. The climatology represents the period 1961–90 and comprises a suite of nine variables: precipitation, wetday frequency, mean temperature, diurnal temperature range, vapor pressure, sunshine, cloud cover, ground frost frequency, and wind speed. The climate surfaces have been constructed from a new dataset of station 1961–90 climatological normals, numbering between 19 800 (precipitation) and 3615 (wind speed). The station data were interpolated as a function of latitude, longitude, and elevation using thinplate splines. The accuracy of the interpolations are assessed using cross validation and by comparison with other climatologies. This new climatology represents an advance over earlier published global terrestrial climatologies in that it is strictly constrained to the period 1961–90, describes an extended suite of surface climate variables, explicitly incorporates elevation as a predictor variable, and contains an evaluation of regional errors associated with this and other commonly used climatologies. The climatology is already being used by researchers in the areas of ecosystem modelling, climate model evaluation, and climate change impact assessment. The data are available from the Climatic Research Unit and images of all the monthly fields can be accessed via the World Wide Web. 1.
Results 1  10
of
1,328,073