Results 1  10
of
358,314
Weak probabilistic anonymity
 INRIA FUTURS AND LIX
, 2005
"... Anonymity means that the identity of the user performing a certain action is maintained secret. The protocols for ensuring anonymity often use random mechanisms which can be described probabilistically. In this paper we propose a notion of weak probabilistic anonymity, where weak refers to the fact ..."
Abstract

Cited by 49 (11 self)
 Add to MetaCart
Anonymity means that the identity of the user performing a certain action is maintained secret. The protocols for ensuring anonymity often use random mechanisms which can be described probabilistically. In this paper we propose a notion of weak probabilistic anonymity, where weak refers
SecCo 2005 Preliminary Version Weak Probabilistic Anonymity 1
"... Abstract Anonymity means that the identity of the user performing a certain action is maintained secret. The protocols for ensuring anonymity often use random mechanisms which can be described probabilistically. In this paper we propose a notion of weak probabilistic anonymity, where weak refers to ..."
Abstract
 Add to MetaCart
Abstract Anonymity means that the identity of the user performing a certain action is maintained secret. The protocols for ensuring anonymity often use random mechanisms which can be described probabilistically. In this paper we propose a notion of weak probabilistic anonymity, where weak refers
The strength of weak learnability
 Machine Learning
, 1990
"... Abstract. This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner with h ..."
Abstract

Cited by 861 (24 self)
 Add to MetaCart
with high probability is able to output an hypothesis that is correct on all but an arbitrarily small fraction of the instances. The concept class is weakly learnable if the learner can produce an hypothesis that performs only slightly better than random guessing. In this paper, it is shown that these two
Boosting a Weak Learning Algorithm By Majority
, 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract

Cited by 516 (15 self)
 Add to MetaCart
presented by Schapire in his paper "The strength of weak learnability", and represents an improvement over his results. The analysis of our algorithm provides general upper bounds on the resources required for learning in Valiant's polynomial PAC learning framework, which are the best general
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
ofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection
Freenet: A Distributed Anonymous Information Storage and Retrieval System
 INTERNATIONAL WORKSHOP ON DESIGNING PRIVACY ENHANCING TECHNOLOGIES: DESIGN ISSUES IN ANONYMITY AND UNOBSERVABILITY
, 2001
"... We describe Freenet, an adaptive peertopeer network application that permits the publication, replication, and retrieval of data while protecting the anonymity of both authors and readers. Freenet operates as a network of identical nodes that collectively pool their storage space to store data ..."
Abstract

Cited by 1062 (12 self)
 Add to MetaCart
We describe Freenet, an adaptive peertopeer network application that permits the publication, replication, and retrieval of data while protecting the anonymity of both authors and readers. Freenet operates as a network of identical nodes that collectively pool their storage space to store
A Bayesian method for the induction of probabilistic networks from data
 MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract

Cited by 1381 (32 self)
 Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction
A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots
 Machine Learning
, 1998
"... . This paper addresses the problem of building largescale geometric maps of indoor environments with mobile robots. It poses the map building problem as a constrained, probabilistic maximumlikelihood estimation problem. It then devises a practical algorithm for generating the most likely map from ..."
Abstract

Cited by 487 (47 self)
 Add to MetaCart
. This paper addresses the problem of building largescale geometric maps of indoor environments with mobile robots. It poses the map building problem as a constrained, probabilistic maximumlikelihood estimation problem. It then devises a practical algorithm for generating the most likely map from
Practical network support for IP traceback
, 2000
"... This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denialofservice attacks and by the difficulty in tracing packets with incorrect, or “spoofed”, source ad ..."
Abstract

Cited by 666 (14 self)
 Add to MetaCart
This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denialofservice attacks and by the difficulty in tracing packets with incorrect, or “spoofed”, source
Probabilistic checking of proofs: a new characterization of NP
 JOURNAL OF THE ACM
, 1998
"... We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof ..."
Abstract

Cited by 437 (27 self)
 Add to MetaCart
We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from
Results 1  10
of
358,314