• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 1 of 1

MOORE, WARRELL AND PRINCE: HIERARCHIAL BOUNDARY PRIORS 1 Vistas: Hierarchial boundary priors using multiscale conditional random fields.

by Alastair P. Moore, Jonathan Warrell, Simon J. D. Prince
"... Boundary detection is a fundamental problem in computer vision. However, bound-ary detection is difficult as it involves integrating multiple cues (intensity, color, texture) as well as trying to incorporate object class or scene level descriptions to mitigate the am-biguity of the local signal. In ..."
Abstract - Add to MetaCart
Boundary detection is a fundamental problem in computer vision. However, bound-ary detection is difficult as it involves integrating multiple cues (intensity, color, texture) as well as trying to incorporate object class or scene level descriptions to mitigate the am-biguity of the local signal. In this paper we investigate incorporating a priori information into boundary detection. We learn a probabilistic model that describes a prior for object boundaries over small patches of the image. We then incorporate this boundary model into a mixture of multiscale conditional random fields, where the mixture components represent different contexts formed by clustering overall spatial distributions of bound-aries across images and image regions (vistas). We demonstrate this approach using challenging real-world road scenes. Importantly, we show that recent spectral methods that have been used in state-of-the-art boundary detection algorithms do not generalize well to these complex scenes. We show that our algorithm successfully learns these boundary distributions and can exploit this knowledge to improve state-of-the-art bound-ary detectors. 1
Results 1 - 1 of 1
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University