Results 11  20
of
1,471,760
A Simple Estimator of Cointegrating Vectors in Higher Order Cointegrated Systems
 ECONOMETRICA
, 1993
"... Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions. T ..."
Abstract

Cited by 507 (3 self)
 Add to MetaCart
Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
New Support Vector Algorithms
, 2000
"... this article with the regression case. To explain this, we will introduce a suitable definition of a margin that is maximized in both cases ..."
Abstract

Cited by 461 (42 self)
 Add to MetaCart
this article with the regression case. To explain this, we will introduce a suitable definition of a margin that is maximized in both cases
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing
Qualitative process theory
 MIT AI Lab Memo
, 1982
"... Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well ..."
Abstract

Cited by 884 (92 self)
 Add to MetaCart
Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well
SEAD: Secure Efficient Distance Vector Routing for Mobile Wireless Ad Hoc Networks
, 2003
"... An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous ad hoc network routing protocols have been based in part on distance vec ..."
Abstract

Cited by 522 (8 self)
 Add to MetaCart
vector approaches, they have generally assumed a trusted environment. In this paper, we design and evaluate the Secure Efficient Ad hoc Distance vector routing protocol (SEAD), a secure ad hoc network routing protocol based on the design of the DestinationSequenced DistanceVector routing protocol
Singularity Detection And Processing With Wavelets
 IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract

Cited by 590 (13 self)
 Add to MetaCart
Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavelet transform are explained. We then prove that the local maxima of a wavelet transform detect the location of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations have a different behavior that we study separately. We show that the size of the oscillations can be measured from the wavelet transform local maxima. It has been shown that one and twodimensional signals can be reconstructed from the local maxima of their wavelet transform [14]. As an application, we develop an algorithm that removes white noises by discriminating the noise and the signal singularities through an analysis of their ...
Tight regulation, modulation, and highlevel expression by vectors containing the arabinose PBAD promoter
 J
, 1995
"... PBAD promoter. arabinoseexpression by vectors containing the Tight regulation, modulation, and highlevel ..."
Abstract

Cited by 858 (14 self)
 Add to MetaCart
PBAD promoter. arabinoseexpression by vectors containing the Tight regulation, modulation, and highlevel
A theory of communicating sequential processes
, 1984
"... A mathematical model for communicating sequential processes is given, and a number of its interesting and useful properties are stated and proved. The possibilities of nondetermimsm are fully taken into account. ..."
Abstract

Cited by 4135 (17 self)
 Add to MetaCart
A mathematical model for communicating sequential processes is given, and a number of its interesting and useful properties are stated and proved. The possibilities of nondetermimsm are fully taken into account.
Results 11  20
of
1,471,760