Results 1  10
of
3,723,741
Large margin methods for structured and interdependent output variables
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract

Cited by 612 (12 self)
 Add to MetaCart
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1848 (44 self)
 Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract

Cited by 518 (2 self)
 Add to MetaCart
with large margins. Compared to Vapnik's algorithm, however, ours is much simpler to implement, and much more efficient in terms of computation time. We also show that our algorithm can be efficiently used in very high dimensional spaces using kernel functions. We performed some experiments using our
Maxmargin Markov networks
, 2003
"... In typical classification tasks, we seek a function which assigns a label to a single object. Kernelbased approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ..."
Abstract

Cited by 594 (15 self)
 Add to MetaCart
In typical classification tasks, we seek a function which assigns a label to a single object. Kernelbased approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract

Cited by 560 (20 self)
 Add to MetaCart
We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class
A Systematic Comparison of Various Statistical Alignment Models
 COMPUTATIONAL LINGUISTICS
, 2003
"... ..."
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Monads for functional programming
, 1995
"... The use of monads to structure functional programs is described. Monads provide a convenient framework for simulating effects found in other languages, such as global state, exception handling, output, or nondeterminism. Three case studies are looked at in detail: how monads ease the modification o ..."
Abstract

Cited by 1481 (39 self)
 Add to MetaCart
The use of monads to structure functional programs is described. Monads provide a convenient framework for simulating effects found in other languages, such as global state, exception handling, output, or nondeterminism. Three case studies are looked at in detail: how monads ease the modification
Results 1  10
of
3,723,741