• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 36,483
Next 10 →

Maximum likelihood from incomplete data via the EM algorithm

by A. P. Dempster, N. M. Laird, D. B. Rubin - JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B , 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract - Cited by 11972 (17 self) - Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value

The weighted majority algorithm

by Nick Littlestone, Manfred K. Warmuth , 1992
"... We study the construction of prediction algorithms in a situation in which a learner faces a sequence of trials, with a prediction to be made in each, and the goal of the learner is to make few mistakes. We are interested in the case that the learner has reason to believe that one of some pool of kn ..."
Abstract - Cited by 877 (43 self) - Add to MetaCart
in the presence of errors in the data. We discuss various versions of the Weighted Majority Algorithm and prove mistake bounds for them that are closely related to the mistake bounds of the best algorithms of the pool. For example, given a sequence of trials, if there is an algorithm in the pool A that makes

Survey of clustering algorithms

by Rui Xu, Donald Wunsch II - IEEE TRANSACTIONS ON NEURAL NETWORKS , 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract - Cited by 499 (4 self) - Add to MetaCart
Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand

A Data Locality Optimizing Algorithm

by Michael E. Wolf, Monica S. Lam , 1991
"... This paper proposes an algorithm that improves the locality of a loop nest by transforming the code via interchange, reversal, skewing and tiling. The loop transformation algorithm is based on two concepts: a mathematical formulation of reuse and locality, and a loop transformation theory that unifi ..."
Abstract - Cited by 804 (16 self) - Add to MetaCart
that unifies the various transforms as unimodular matrix transformations. The algorithm has been implemented in the SUIF (Stanford University Intermediate Format) compiler, and is successful in optimizing codes such as matrix multiplication, successive over-relaxation (SOR), LU decomposition without pivoting

Factor Graphs and the Sum-Product Algorithm

by Frank R. Kschischang, Brendan J. Frey, Hans-Andrea Loeliger - IEEE TRANSACTIONS ON INFORMATION THEORY , 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract - Cited by 1791 (69 self) - Add to MetaCart
computational rule, the sum-product algorithm operates in factor graphs to compute---either exactly or approximately---various marginal functions by distributed message-passing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can

Experiments with a New Boosting Algorithm

by Yoav Freund, Robert E. Schapire , 1996
"... In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced the relate ..."
Abstract - Cited by 2213 (20 self) - Add to MetaCart
In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced

An Overview of Evolutionary Algorithms in Multiobjective Optimization

by Carlos M. Fonseca, Peter J. Fleming - Evolutionary Computation , 1995
"... The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performa ..."
Abstract - Cited by 492 (13 self) - Add to MetaCart
The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial

A Fast Quantum Mechanical Algorithm for Database Search

by Lov K. Grover - ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING , 1996
"... Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic) will need to look at a minimum of names. Quantum mechanical systems can be in a supe ..."
Abstract - Cited by 1135 (10 self) - Add to MetaCart
superposition of states and simultaneously examine multiple names. By properly adjusting the phases of various operations, successful computations reinforce each other while others interfere randomly. As a result, the desired phone number can be obtained in only steps. The algorithm is within a small constant

SPEA2: Improving the Strength Pareto Evolutionary Algorithm

by Eckart Zitzler, Marco Laumanns, Lothar Thiele , 2001
"... The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Pareto-optimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very ..."
Abstract - Cited by 708 (19 self) - Add to MetaCart
very good performance in comparison to other multiobjective evolutionary algorithms, and therefore it has been a point of reference in various recent investigations, e.g., (Corne, Knowles, and Oates 2000). Furthermore, it has been used in different applications, e.g., (Lahanas, Milickovic, Baltas

Comparison of Multiobjective Evolutionary Algorithms: Empirical Results

by Eckart Zitzler, Lothar Thiele, Kalyanmoy Deb , 2000
"... In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in conver ..."
Abstract - Cited by 628 (41 self) - Add to MetaCart
In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly
Next 10 →
Results 1 - 10 of 36,483
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University