• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 27,188
Next 10 →

On Using Fast Exponentiation Algorithm in PDAs (or: How Secure is the Discrete Logarithm Problem Assumption in PDAs?) (Extended Abstract)

by Willy Susilo, Jianyong Huang, Jennifer Seberry
"... Personal Digital Assistants (PDAs) are the miniature of normal size PCs, with a very limited computational power. In this paper, we investigate the security of PDAs when they are used to perform some cryptographic applications. In our context, we investigate the computation y = g x (mod p), for a pr ..."
Abstract - Add to MetaCart
Personal Digital Assistants (PDAs) are the miniature of normal size PCs, with a very limited computational power. In this paper, we investigate the security of PDAs when they are used to perform some cryptographic applications. In our context, we investigate the computation y = g x (mod p), for a

The Omega Test: a fast and practical integer programming algorithm for dependence analysis

by William Pugh - Communications of the ACM , 1992
"... The Omega testi s ani nteger programmi ng algori thm that can determi ne whether a dependence exi sts between two array references, and i so, under what condi7: ns. Conventi nalwi[A m holds thati nteger programmiB techni:36 are far too expensi e to be used for dependence analysi6 except as a method ..."
Abstract - Cited by 522 (15 self) - Add to MetaCart
The Omega testi s ani nteger programmi ng algori thm that can determi ne whether a dependence exi sts between two array references, and i so, under what condi7: ns. Conventi nalwi[A m holds thati nteger programmiB techni:36 are far too expensi e to be used for dependence analysi6 except as a method

A Fast Algorithm for Particle Simulations

by L. Greengard, V. Rokhlin , 1987
"... this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions a ..."
Abstract - Cited by 1152 (19 self) - Add to MetaCart
are Coulombic or gravitational in nature. For a the form system of N particles, an amount of work of the order O(N 2 ) has traditionally been required to evaluate all pairwise interactions, un- F5F far 1 (F near 1F external ), less some approximation or truncation method is used. The algorithm of the present

A fast learning algorithm for deep belief nets

by Geoffrey E. Hinton, Simon Osindero - Neural Computation , 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract - Cited by 970 (49 self) - Add to MetaCart
We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer

Fast probabilistic algorithms for verification of polynomial identities

by J. T. Schwartz - J. ACM , 1980
"... ABSTRACT The starthng success of the Rabm-Strassen-Solovay pnmahty algorithm, together with the intriguing foundattonal posstbthty that axtoms of randomness may constttute a useful fundamental source of mathemaucal truth independent of the standard axmmaUc structure of mathemaUcs, suggests a wgorous ..."
Abstract - Cited by 520 (1 self) - Add to MetaCart
ABSTRACT The starthng success of the Rabm-Strassen-Solovay pnmahty algorithm, together with the intriguing foundattonal posstbthty that axtoms of randomness may constttute a useful fundamental source of mathemaucal truth independent of the standard axmmaUc structure of mathemaUcs, suggests a

Fast and robust fixed-point algorithms for independent component analysis

by Aapo Hyvärinen - IEEE TRANS. NEURAL NETW , 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract - Cited by 884 (34 self) - Add to MetaCart
variance. Finally, we introduce simple fixed-point algorithms for practical optimization of the contrast functions. These algorithms optimize the contrast functions very fast and reliably.

The NewReno Modification to TCP’s Fast Recovery Algorithm

by S. Floyd, T. Henderson , 2003
"... RFC 2581 [RFC2581] documents the following four intertwined TCP congestion control algorithms: Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery. RFC 2581 [RFC2581] explicitly allows certain modifications of these algorithms, including modifications that use the TCP Selective Ackn ..."
Abstract - Cited by 600 (9 self) - Add to MetaCart
RFC 2581 [RFC2581] documents the following four intertwined TCP congestion control algorithms: Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery. RFC 2581 [RFC2581] explicitly allows certain modifications of these algorithms, including modifications that use the TCP Selective

A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood

by Stéphane Guindon, Olivier Gascuel , 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract - Cited by 2182 (27 self) - Add to MetaCart
. The core of this method is a simple hill-climbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment

A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II

by Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, T. Meyarivan , 2000
"... Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) non-elitism approach, and (iii) the need for specifying a sharing param ..."
Abstract - Cited by 1815 (60 self) - Add to MetaCart
Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) non-elitism approach, and (iii) the need for specifying a sharing

FAST VOLUME RENDERING USING A SHEAR-WARP FACTORIZATION OF THE VIEWING TRANSFORMATION

by Philippe G. Lacroute , 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used brute-force techniques that req ..."
Abstract - Cited by 542 (2 self) - Add to MetaCart
that require on the order of 100 seconds to render typical data sets on a workstation. Algorithms with optimizations that exploit coherence in the data have reduced rendering times to the range of ten seconds but are still not fast enough for interactive visualization applications. In this thesis we present a
Next 10 →
Results 1 - 10 of 27,188
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University