Results 1  10
of
5,316,275
Mathematical Control Theory: Deterministic Finite Dimensional Systems
 of Texts in Applied Mathematics
, 1990
"... The title of this book gives a very good description of its contents and style, although I might have added “Introduction to ” at the beginning. The style is mathematical: precise, clear statements (i.e., theorems) are asserted, then carefully proved. The book covers many of the key topics in contro ..."
Abstract

Cited by 485 (122 self)
 Add to MetaCart
The title of this book gives a very good description of its contents and style, although I might have added “Introduction to ” at the beginning. The style is mathematical: precise, clear statements (i.e., theorems) are asserted, then carefully proved. The book covers many of the key topics in control theory, except — as the subtitle has warned us — those involving stochastic processes or infinitedimensional systems. The level is appropriate for a senior
Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding
 IEEE TRANS. ON INFORMATION THEORY
, 1999
"... We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing informationembedding rate, mini ..."
Abstract

Cited by 495 (15 self)
 Add to MetaCart
refer to as dither modulation. Using deterministic models to evaluate digital watermarking methods, we show that QIM is "provably good" against arbitrary bounded and fully informed attacks, which arise in several copyright applications, and in particular, it achieves provably better rate
Active Learning with Statistical Models
, 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract

Cited by 677 (12 self)
 Add to MetaCart
For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 619 (31 self)
 Add to MetaCart
of the relational structure present in our database. This paper builds on the recent work on probabilistic relational models (PRMs), and describes how to learn them from databases. PRMs allow the properties of an object to depend probabilistically both on other properties of that object and on properties of related
A comparative analysis of selection schemes used in genetic algorithms
 Foundations of Genetic Algorithms
, 1991
"... This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or d ..."
Abstract

Cited by 512 (32 self)
 Add to MetaCart
This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference
A Compositional Approach to Performance Modelling
, 1996
"... Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more ea ..."
Abstract

Cited by 746 (102 self)
 Add to MetaCart
as model construction. An operational semantics is provided for PEPA and its use to generate an underlying Markov process for any PEPA model is explained and demonstrated. Model simplification and state space aggregation have been proposed as means to tackle the problems of large performance models
Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
 J. Geophys. Res
, 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract

Cited by 782 (22 self)
 Add to MetaCart
. A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter
Fast texture synthesis using treestructured vector quantization
, 2000
"... Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given ..."
Abstract

Cited by 562 (12 self)
 Add to MetaCart
Field texture models and generates textures through a deterministic searching process. We accelerate this synthesis process using treestructured vector quantization.
Speaker verification using Adapted Gaussian mixture models
 Digital Signal Processing
, 2000
"... In this paper we describe the major elements of MIT Lincoln Laboratory’s Gaussian mixture model (GMM)based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). The system is built around the likelihood ratio test for verification, using simple but ef ..."
Abstract

Cited by 976 (42 self)
 Add to MetaCart
In this paper we describe the major elements of MIT Lincoln Laboratory’s Gaussian mixture model (GMM)based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). The system is built around the likelihood ratio test for verification, using simple
Results 1  10
of
5,316,275