• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 22,950
Next 10 →

Unsupervised learning of finite mixture models

by Mario A. T. Figueiredo, Anil K. Jain - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2002
"... This paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectation-maximization (EM) alg ..."
Abstract - Cited by 418 (22 self) - Add to MetaCart
This paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectation-maximization (EM

Object class recognition by unsupervised scale-invariant learning

by R. Fergus, P. Perona, A. Zisserman - In CVPR , 2003
"... We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and ..."
Abstract - Cited by 1127 (50 self) - Add to MetaCart
We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion

Unsupervised Learning by Probabilistic Latent Semantic Analysis

by Thomas Hofmann - Machine Learning , 2001
"... Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of co-occurren ..."
Abstract - Cited by 618 (4 self) - Add to MetaCart
Maximization algorithm for model fitting, which has shown excellent performance in practice. Probabilistic Latent Semantic Analysis has many applications, most prominently in information retrieval, natural language processing, machine learning from text, and in related areas. The paper presents perplexity

Supervised and unsupervised discretization of continuous features

by James Dougherty, Ron Kohavi, Mehran Sahami - in A. Prieditis & S. Russell, eds, Machine Learning: Proceedings of the Twelfth International Conference , 1995
"... Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify de n-ing characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised dis ..."
Abstract - Cited by 540 (11 self) - Add to MetaCart
Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify de n-ing characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised

Unsupervised Models for Named Entity Classification

by Michael Collins, Yoram Singer - In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora , 1999
"... This paper discusses the use of unlabeled examples for the problem of named entity classification. A large number of rules is needed for coverage of the domain, suggesting that a fairly large number of labeled examples should be required to train a classifier. However, we show that the use of unlabe ..."
Abstract - Cited by 542 (4 self) - Add to MetaCart
algorithms. The first method uses a similar algorithm to that of (Yarowsky 95), with modifications motivated by (Blum and Mitchell 98). The second algorithm extends ideas from boosting algorithms, designed for supervised learning tasks, to the framework suggested by (Blum and Mitchell 98). 1

Unsupervised word sense disambiguation rivaling supervised methods

by David Yarowsky - IN PROCEEDINGS OF THE 33RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS , 1995
"... This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have ..."
Abstract - Cited by 638 (4 self) - Add to MetaCart
This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have

Unsupervised learning of human action categories using spatial-temporal words

by Juan Carlos Niebles, Hongcheng Wang, Li Fei-fei - In Proc. BMVC , 2006
"... Imagine a video taken on a sunny beach, can a computer automatically tell what is happening in the scene? Can it identify different human activities in the video, such as water surfing, people walking and lying on the beach? To automatically classify or localize different actions in video sequences ..."
Abstract - Cited by 494 (8 self) - Add to MetaCart
Imagine a video taken on a sunny beach, can a computer automatically tell what is happening in the scene? Can it identify different human activities in the video, such as water surfing, people walking and lying on the beach? To automatically classify or localize different actions in video sequences is very useful for a variety of tasks, such as video surveillance, objectlevel video summarization, video indexing, digital library organization, etc. However, it remains a challenging task for computers to achieve robust action recognition due to cluttered background, camera motion, occlusion, and geometric and photometric variances of objects. For example, in a live video of a skating competition, the skater moves rapidly across the rink, and the camera also moves to follow the skater. With moving camera, non-stationary background, and moving target, few vision algorithms could identify, categorize and

The "Independent Components" of Natural Scenes are Edge Filters

by Anthony J. Bell, Terrence J. Sejnowski , 1997
"... It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attem ..."
Abstract - Cited by 617 (29 self) - Add to MetaCart
It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm

Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews

by Peter Turney , 2002
"... This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs. A ..."
Abstract - Cited by 784 (5 self) - Add to MetaCart
This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs

Motivational and self-regulated learning components of classroom academic performance

by Paul R. Pintrich, Elisabeth V. De Groot - Journal of Educational Psychology , 1990
"... A correlational study examined relationships between motivational orientation, self-regulated learning, and classroom academic performance for 173 seventh graders from eight science and seven English classes. A self-report measure of student self-efficacy, intrinsic value, test anxiety, self-regulat ..."
Abstract - Cited by 679 (6 self) - Add to MetaCart
variety of definitions of self-regulated learning, but three components seem especially important for classroom performance. First, self-regulated learning includes students ' metacognitive strategies for plan-ning, monitoring, and modifying their cognition (e.g., Brown,
Next 10 →
Results 1 - 10 of 22,950
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University