Results 11 - 20
of
175,409
Face Recognition Based on Fitting a 3D Morphable Model
- IEEE Trans. Pattern Anal. Mach. Intell
, 2003
"... Abstract—This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image format ..."
Abstract
-
Cited by 546 (19 self)
- Add to MetaCart
formation in 3D space, using computer graphics, and it estimates 3D shape and texture of faces from single images. The estimate is achieved by fitting a statistical, morphable model of 3D faces to images. The model is learned from a set of textured 3D scans of heads. We describe the construction
Locally weighted learning
- ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract
-
Cited by 594 (53 self)
- Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Power-law distributions in empirical data
- ISSN 00361445. doi: 10.1137/ 070710111. URL http://dx.doi.org/10.1137/070710111
, 2009
"... Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur in the t ..."
Abstract
-
Cited by 589 (7 self)
- Add to MetaCart
in the tail of the distribution. In particular, standard methods such as least-squares fitting are known to produce systematically biased estimates of parameters for power-law distributions and should not be used in most circumstances. Here we describe statistical techniques for making accurate parameter
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract
-
Cited by 958 (5 self)
- Add to MetaCart
basis functions than a comparable SVM while oering a number of additional advantages. These include the benets of probabilistic predictions, automatic estimation of `nuisance' parameters, and the facility to utilise arbitrary basis functions (e.g. non-`Mercer' kernels).
2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late Nineteenth Century
- J. Geophysical Research
"... data set, HadISST1, and the nighttime marine air temperature (NMAT) data set, HadMAT1. HadISST1 replaces the global sea ice and sea surface temperature (GISST) data sets and is a unique combination of monthly globally complete fields of SST and sea ice concentration on a 1 ° latitude-longitude grid ..."
Abstract
-
Cited by 517 (3 self)
- Add to MetaCart
and for algorithm deficiencies in the Antarctic and by making the historical in situ concentrations consistent with the satellite data. SSTs near sea ice are estimated using statistical relationships between SST and sea ice concentration. HadISST1 compares well with other published analyses, capturing trends
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract
-
Cited by 788 (23 self)
- Add to MetaCart
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly represent statements about independence. Among these approaches we single out a method we call Tree Augmented Naive Bayes (TAN), which outperforms naive Bayes, yet at the same time maintains the computational simplicity (no search involved) and robustness that characterize naive Bayes. We experimentally tested these approaches, using problems from the University of California at Irvine repository, and compared them to C4.5, naive Bayes, and wrapper methods for feature selection.
TnT - A Statistical Part-Of-Speech Tagger
, 2000
"... Trigrams'n'Tags (TnT) is an efficient statistical part-of-speech tagger. Contrary to claims found elsewhere in the literature, we argue that a tagger based on Markov models performs at least as well as other current approaches, including the Maximum Entropy framework. A recent comparison h ..."
Abstract
-
Cited by 525 (5 self)
- Add to MetaCart
Trigrams'n'Tags (TnT) is an efficient statistical part-of-speech tagger. Contrary to claims found elsewhere in the literature, we argue that a tagger based on Markov models performs at least as well as other current approaches, including the Maximum Entropy framework. A recent comparison has even shown that TnT performs significantly better for the tested corpora. We describe the basic model of TnT, the techniques used for smoothing and for handling unknown words. Furthermore, we present evaluations on two corpora.
Reopening the Convergence Debate: A new look at cross-country growth empirics
- JOURNAL OF ECONOMIC GROWTH
, 1996
"... ..."
Missing data: Our view of the state of the art
- Psychological Methods
, 2002
"... Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missing-data problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random ..."
Abstract
-
Cited by 689 (1 self)
- Add to MetaCart
Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missing-data problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random (MAR) concept. They summarize the evidence against older procedures and, with few exceptions, dis-courage their use. They present, in both technical and practical language, 2 general approaches that come highly recommended: maximum likelihood (ML) and Bayes-ian multiple imputation (MI). Newer developments are discussed, including some for dealing with missing data that are not MAR. Although not yet in the main-stream, these procedures may eventually extend the ML and MI methods that currently represent the state of the art. Why do missing data create such difficulty in sci-entific research? Because most data analysis proce-dures were not designed for them. Missingness is usu-ally a nuisance, not the main focus of inquiry, but
On the statistical analysis of dirty pictures
- JOURNAL OF THE ROYAL STATISTICAL SOCIETY B
, 1986
"... ..."
Results 11 - 20
of
175,409