• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 2,806,910
Next 10 →

The pyramid match kernel: Discriminative classification with sets of image features

by Kristen Grauman, Trevor Darrell - IN ICCV , 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract - Cited by 546 (29 self) - Add to MetaCart
Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve

An extended set of Haar-like features for rapid objection detection

by Rainer Lienhart, Jochen Maydt - IEEE ICIP
"... Recently Viola et al. [5] have introduced a rapid object detection scheme based on a boosted cascade of simple feature classifiers. In this paper we introduce a novel set of rotated haar-like features. These novel features significantly enrich the simple features of [5] and can also be calculated ef ..."
Abstract - Cited by 567 (4 self) - Add to MetaCart
Recently Viola et al. [5] have introduced a rapid object detection scheme based on a boosted cascade of simple feature classifiers. In this paper we introduce a novel set of rotated haar-like features. These novel features significantly enrich the simple features of [5] and can also be calculated

Wrappers for Feature Subset Selection

by Ron Kohavi, George H. John - AIJ SPECIAL ISSUE ON RELEVANCE , 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract - Cited by 1522 (3 self) - Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set

Inducing Features of Random Fields

by Stephen Della Pietra, Vincent Della Pietra, John Lafferty - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract - Cited by 664 (14 self) - Add to MetaCart
We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing

An introduction to variable and feature selection

by Isabelle Guyon - Journal of Machine Learning Research , 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract - Cited by 1283 (16 self) - Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.

Detection and Tracking of Point Features

by Carlo Tomasi, Takeo Kanade - International Journal of Computer Vision , 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small inter-frame displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract - Cited by 622 (2 self) - Add to MetaCart
The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small inter-frame displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade

Face recognition: features versus templates

by Roberto Brunelli, Tomaso Poggio - IEEE Transactions on Pattern Analysis and Machine Intelligence , 1993
"... Abstract-Over the last 20 years, several different techniques have been proposed for computer recognition of human faces. The purpose of this paper is to compare two simple but general strategies on a common database (frontal images of faces of 47 people: 26 males and 21 females, four images per per ..."
Abstract - Cited by 737 (25 self) - Add to MetaCart
person). We have developed and implemented two new algorithms; the first one is based on the computation of a set of geometrical features, such as nose width and length, mouth position, and chin shape, and the second one is based on almost-grey-level template matching. The results obtained on the testing

SURF: Speeded Up Robust Features

by Herbert Bay, Tinne Tuytelaars, Luc Van Gool - ECCV
"... Abstract. In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Ro-bust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be comp ..."
Abstract - Cited by 842 (13 self) - Add to MetaCart
Abstract. In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Ro-bust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can

Irrelevant Features and the Subset Selection Problem

by George H. John, Ron Kohavi, Karl Pfleger - MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL , 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small high-accuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract - Cited by 741 (26 self) - Add to MetaCart
We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small high-accuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features

Selection of relevant features and examples in machine learning

by Avrim L. Blum, Pat Langley - ARTIFICIAL INTELLIGENCE , 1997
"... In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been mad ..."
Abstract - Cited by 590 (2 self) - Add to MetaCart
In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been
Next 10 →
Results 1 - 10 of 2,806,910
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University