• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 85,426
Next 10 →

Combining labeled and unlabeled data with co-training

by Avrim Blum, Tom Mitchell , 1998
"... We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the ta ..."
Abstract - Cited by 1633 (28 self) - Add to MetaCart
data, but our goal is to use both views together to allow inexpensive unlabeled data to augment amuch smaller set of labeled examples. Speci cally, the presence of two distinct views of each example suggests strategies in which two learning algorithms are trained separately on each view, and then each

Text Classification from Labeled and Unlabeled Documents using EM

by Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun, Tom Mitchell - MACHINE LEARNING , 1999
"... This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract - Cited by 1033 (15 self) - Add to MetaCart
, and probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the documents, and iterates to convergence. This basic EM procedure works well when the data conform to the generative assumptions of the model. However these assumptions are often violated in practice

Manifold regularization: A geometric framework for learning from labeled and unlabeled examples

by Mikhail Belkin, Partha Niyogi, Vikas Sindhwani - JOURNAL OF MACHINE LEARNING RESEARCH , 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning al ..."
Abstract - Cited by 578 (16 self) - Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning

A framework for learning predictive structures from multiple tasks and unlabeled data

by Rie Kubota Ando, Tong Zhang - JOURNAL OF MACHINE LEARNING RESEARCH , 2005
"... One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semi-supervised learning. Although a number of such methods ar ..."
Abstract - Cited by 443 (3 self) - Add to MetaCart
One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semi-supervised learning. Although a number of such methods

Clustering by passing messages between data points

by Brendan J. Frey, Delbert Dueck - Science , 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract - Cited by 696 (8 self) - Add to MetaCart
Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only

Learning with local and global consistency.

by Dengyong Zhou , Olivier Bousquet , Thomas Navin Lal , Jason Weston , Bernhard Schölkopf - In NIPS, , 2003
"... Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intr ..."
Abstract - Cited by 673 (21 self) - Add to MetaCart
to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

Space-time Interest Points

by Ivan Laptev, Tony Lindeberg - IN ICCV , 2003
"... Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatio-temporal domain and show how the resulting features often reflect interesting events that can be use ..."
Abstract - Cited by 819 (21 self) - Add to MetaCart
Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatio-temporal domain and show how the resulting features often reflect interesting events that can

Surface reconstruction from unorganized points

by Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, Werner Stuetzle - COMPUTER GRAPHICS (SIGGRAPH ’92 PROCEEDINGS) , 1992
"... We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be know ..."
Abstract - Cited by 815 (8 self) - Add to MetaCart
to be known in advance — all are inferred automatically from the data. This problem naturally arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from two-dimensional slices, and interactive surface sketching.

OPTICS: Ordering Points To Identify the Clustering Structure

by Mihael Ankerst, Markus M. Breunig, Hans-peter Kriegel, Jörg Sander , 1999
"... Cluster analysis is a primary method for database mining. It is either used as a stand-alone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract - Cited by 527 (51 self) - Add to MetaCart
.g. representative points, arbitrary shaped clusters), but also the intrinsic clustering structure. For medium sized data sets, the cluster-ordering can be represented graphically and for very large data sets, we introduce an appropriate visualization technique. Both are suitable for interactive exploration

QSplat: A Multiresolution Point Rendering System for Large Meshes

by Szymon Rusinkiewicz, Marc Levoy , 2000
"... Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of millions of polygons. Traditional algorithms for display, simplification, and progressive transmission of meshes are impractical for data sets of this size. We describe a system for representing and p ..."
Abstract - Cited by 502 (8 self) - Add to MetaCart
and progressively displaying these meshes that combines a multiresolution hierarchy based on bounding spheres with a rendering system based on points. A single data structure is used for view frustum culling, backface culling, level-of-detail selection, and rendering. The representation is compact and can
Next 10 →
Results 1 - 10 of 85,426
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University