### Table 1: Constructors in First-Order Description Logics

"... In PAGE 2: ... The for- mer are interpreted as subsets of a given domain, and the latter as binary relations on the domain. Table1 lists constructors that allow one to build (complex) concepts and roles from (atomic) concept names and role names.... In PAGE 3: ...Table 1: Constructors in First-Order Description Logics Description logics di er in the constructions they admit. By combining constructors taken from Table1 , two well-known hierarchies of description logics may be obtained. The logics we consider here are extensions of FL?; this is the logic with gt;, ?, universal quanti cation, conjunction and un- quali ed existential quanti cation 9R: gt;.... In PAGE 3: ... For instance, FLEU? is FL? with (full) existential quanti cation and disjunction. Description logics are interpreted on interpretations I = ( I; I), where I is a non-empty domain, and I is an interpretation function assigning subsets of I to concept names and binary relations over I to role names; complex concepts and roles are interpreted using the recipes speci ed in Table1 . The semantic value of an expression E in an interpretation I is simply the set EI.... In PAGE 4: ... First, item 1 is next to trivial. The semantics given in Table1 induces translations ( ) and ( ) taking concepts and roles, respectively, to formulas in a rst-order language whose signature consists of unary predicate symbols corresponding to atomic concepts names, and binary predicate symbols corresponding to... In PAGE 7: ... Hence, ALC lt; ALCR, ALCN, ALCRN. a Now, what do we need to do to adapt the above result for other exten- sions of FL? de ned by Table1 ? For logics less expressive than ALC we can not just use bisimulations, as such logics lack negation or disjunction, and these are automatically preserved under bisimulations; moreover, the proof of Theorem 3.3 uses the presence of the booleans in an essential way.... In PAGE 8: ...Table1 that are not in FL?, and examine which changes are needed to characterize the resulting logics. This is followed by a section in which we consider combina- tions of constructors.... In PAGE 20: ...7.6 Classifying an Arbitrary Description Logic To obtain a characterization of an arbitrary description logic (de ned from Table1 ), somply combine the observations listed in Sections 4.... In PAGE 20: ... Several comments are in order. First, the diagram does not mention all possible combinations of the constructors listed in Table1 . The reason for... ..."

### Table 1: Constructors in First-Order Description Logics

1999

"... In PAGE 3: ... The for- mer are interpreted as subsets of a given domain, and the latter as binary relations on the domain. Table1 lists constructors that allow one to build #28complex#29 concepts and roles from #28atomic#29 concept names and role names. For instance, the concept Man u9Child:#3Eu8Child:Human denotes the set of... In PAGE 3: ...Table 1: Constructors in First-Order Description Logics Description logics di#0Ber in the constructions they admit. By combining constructors taken from Table1 , two well-known hierarchies of description logics may be obtained. The logics we consider here are extensions of FL , ; this is the logic with #3E, ?, universal quanti#0Ccation, conjunction and un- quali#0Ced existential quanti#0Ccation 9R:#3E.... In PAGE 4: ... For instance, FLEU , is FL , with #28full#29 existential quanti#0Ccation and disjunction. Description logics are interpreted on interpretations I =#28#01 I ; #01 I #29, where #01 I is a non-empty domain, and #01 I is an interpretation function assigning subsets of #01 I to concept names and binary relations over #01 I to role names; complex concepts and roles are interpreted using the recipes speci#0Ced in Table1 . The semantic value of an expression E in an interpretation I is simply the set E I .... In PAGE 4: ...ome page at http:#2F#2Fdl.kr.org#2Fdl#2F. 3 De#0Cning Expressive Power In this section we de#0Cne our notion of expressive power, and explain our method for determining the expressivepower of a given description logic. Our aim in this paper is to determine the expressive power of concept expressions of every extension of FL , and AL that can be de#0Cned using the constructors in Table1 . Wesay that a logic L 1 is at least as expressive as a logic L 2 if for every concept expression in L 2 there is an equivalent concept expression in L 1 ; notation: L 2 #14 L 1 .... In PAGE 4: ... First, item 1 is next to trivial. The semantics given in Table1 induces translations #28#01#29 #1C and #28#01#29 #1B taking concepts and roles, respectively, to formulas in a #0Crst-order language whose signature consists of unary predicate symbols corresponding... In PAGE 7: ... Hence, ALC #3C ALCR, ALCN, ALCRN. a Now, what do we need to do to adapt the above result for other exten- sions of FL , de#0Cned by Table1 ? For logics less expressive than ALC we... In PAGE 8: ... We #0Crst consider the `minimal apos; logic FL , ,char- acterize its concepts semantically, and use the characterization to separate FL , from richer logics. After that, we treat each of the constructors in Table1 that are not in FL , , and examine which changes are needed to characterize the concepts de#0Cnable in the resulting logics. This is followed by a brief section in which we consider combinations of constructors.... In PAGE 18: ... FL , FLE , FLU , AL FLN , FLR , FLEU , ALE FLEN , FLER , ALU FLUN , FLUR , ALN ALR FLNR , ALC FLEUN , FLEUR , ALEN ALER FLENR , ALUN ALUR FLUNR , ALNR ALCN ALCR FLEUNR , ALENR ALUNR ALCNR Figure 2: Classifying Description Logics Several comments are in order. First, the diagram does not mention all possible combinations of the constructors listed in Table1 . The reason for... In PAGE 21: ... A second important di#0Berence between Baader apos;s work and ours lies in the type of results that have been obtained. Baader only establishes a small number of separation results, whereas we provide a complete classi#0Ccation of all languages de#0Cnable using the constructors in Table1 . More importantly, our separation results are based on semantic characterizations; this gives a deeper insightinto the properties of logics than mere separation results.... In PAGE 35: ... B.6 Classifying an Arbitrary Description Logic To obtain a characterization of an arbitrary description logic #28de#0Cned from Table1 #29, simply combine the observations listed in Sections B.... ..."

Cited by 3

### Table 1. First-order logic part of the ODL calculus.

2006

"... In PAGE 10: ... Yet, rule applications for rst- order reasoning and program reasoning are not separated but intertwined. For rst-order and propositional logic standard rule schemata are listed in Table1 , including an integer induction scheme. Within the rules for the program logic part (Table 2), state update rules R29{R30 constitute a peculiarity of ODL and will be discussed after de ning rule applications.... ..."

Cited by 7

### TABLE I. FIRST ORDER LOGIC RULES

2003

Cited by 5

### Table 1: Correspondence Between MEBN and First-Order Logic Syntactic Elements

2003

"... In PAGE 8: ... The value of RV X when applied to instance V is written X(V); the expression X(V)=O denotes that RV X has outcome O when applied to instance V. Table1 shows the correspondence between the above MEBN syntactic elements and syntactic elements of first-order logic. Table 1 also shows MEBN constructs corresponding to logical connectives, nested function application, and quantification.... In PAGE 8: ... Table 1 shows the correspondence between the above MEBN syntactic elements and syntactic elements of first-order logic. Table1 also shows MEBN constructs corresponding to logical connectives, nested function application, and quantification. In first-order logic, logical connectives are used to compose terms into sentences.... ..."

Cited by 2

### Table I. Proofs-as-programs correspondence for first-order logic

1998

Cited by 9

### Table 6. Connections among ALC and decidable fragments of first-order logic

2004

Cited by 6

### Table 6. Connections among ALC and decidable fragments of first-order logic

2004

Cited by 6

### Table 7. Decidable description logics and first-order fragments without identity

2004

Cited by 6

### Table 3. Problem SET171+3: The First-Order TPTP Encoding.

"... In PAGE 5: ... 2.3 Sets, Relations, and Functions: First-Order Logic Encoding Let us consider example SET171+3 in its rst-order formulation from the TPTP (see Table3 ). We can observe that the assumptions provide only a partial ax- iomatisation of naive set theory.... ..."