Results 1  10
of
87,349
Noise Trader Risk in Financial Markets
 Jolurnial of Political Economy
, 1990
"... We present a simple overlapping generations model of an asset market in which irrational noise traders with erroneous stochastic beliefs both affect prices and earn higher expected returns. The unpredictability of noise traders ’ beliefs creates a risk in the price of the asset that deters rational ..."
Abstract

Cited by 858 (23 self)
 Add to MetaCart
We present a simple overlapping generations model of an asset market in which irrational noise traders with erroneous stochastic beliefs both affect prices and earn higher expected returns. The unpredictability of noise traders ’ beliefs creates a risk in the price of the asset that deters rational
Preference Parameters And Behavioral Heterogeneity: An Experimental Approach In The Health And Retirement Study
, 1997
"... This paper reports measures of preference parameters relating to risk tolerance, time preference, and intertemporal substitution. These measures are based on survey responses to hypothetical situations constructed using an economic theorist's concept of the underlying parameters. The individual ..."
Abstract

Cited by 524 (12 self)
 Add to MetaCart
. The individual measures of preference parameters display heterogeneity. Estimated risk tolerance and the elasticity of intertemporal substitution are essentially uncorrelated across individuals. Measured risk tolerance is positively related to risky behaviors, including smoking, drinking, failing to have
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Capacity of multiantenna Gaussian channels
 EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
, 1999
"... We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such form ..."
Abstract

Cited by 2878 (6 self)
 Add to MetaCart
such formulas. We show that the potential gains of such multiantenna systems over singleantenna systems is rather large under independence assumptions for the fades and noises at different receiving antennas.
A computational approach to edge detection
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1986
"... AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal ..."
Abstract

Cited by 4621 (0 self)
 Add to MetaCart
with different signaltonoise ratios in the image. We present a general method, called feature synthesis, for the finetocoarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function
Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding
 IEEE TRANS. ON INFORMATION THEORY
, 1999
"... We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing informationembedding rate, mini ..."
Abstract

Cited by 495 (15 self)
 Add to MetaCart
distortionrobustness tradeoffs than currently popular spreadspectrum and lowbit(s) modulation methods. Furthermore, we show that for some important classes of probabilistic models, DCQIM is optimal (capacityachieving) and regular QIM is nearoptimal. These include both additive white Gaussian noise
Ensemble Methods in Machine Learning
 MULTIPLE CLASSIFIER SYSTEMS, LBCS1857
, 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include errorcorrecting output coding, Bagging, and boostin ..."
Abstract

Cited by 607 (3 self)
 Add to MetaCart
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include errorcorrecting output coding, Bagging, and boosting. This paper reviews these methods and explains why ensembles can often perform better than any single classifier. Some previous studies comparing ensemble methods are reviewed, and some new experiments are presented to uncover the reasons that Adaboost does not overfit rapidly.
On the impossibility of informationally efficient markets
 AMERICAN ECONOMIC REVIEW
, 1980
"... ..."
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the original data. Wellknown linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes the statistical dependence of the components of the representation. Such a representation seems to capture the essential structure of the data in many applications. In this paper, we survey the existing theory and methods for ICA.
A New Extension of the Kalman Filter to Nonlinear Systems
, 1997
"... The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which ..."
Abstract

Cited by 747 (6 self)
 Add to MetaCart
The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which simply linearises all nonlinear models so that the traditional linear Kalman filter can be applied. Although the EKF (in its many forms) is a widely used filtering strategy, over thirty years of experience with it has led to a general consensus within the tracking and control community that it is difficult to implement, difficult to tune, and only reliable for systems which are almost linear on the time scale of the update intervals. In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely sampled points can be used to parameterise mean and covariance, the estimator yields performance equivalent to the KF for linear systems yet general...
Results 1  10
of
87,349