Results 1  10
of
912,423
Coherent Measures of Risk
, 1998
"... In this paper we study both market risks and nonmarket risks, without complete markets assumption, and discuss methods of measurement of these risks. We present and justify a set of four desirable properties for measures of risk, and call the measures satisfying these properties "coherent" ..."
Abstract

Cited by 882 (4 self)
 Add to MetaCart
In this paper we study both market risks and nonmarket risks, without complete markets assumption, and discuss methods of measurement of these risks. We present and justify a set of four desirable properties for measures of risk, and call the measures satisfying these properties "coherent
c ○ Rinton Press HIGHFIDELITY QUANTUM CONTROL USING ION CRYSTALS IN A PENNING TRAP
, 2009
"... We provide an introduction to the use of ion crystals in a Penning trap [1, 2, 3, 4] for experiments in quantum information. Macroscopic Penning traps allow for the containment of a few to a few million atomic ions whose internal states may be used in quantum information experiments. Ions are laser ..."
Abstract
 Add to MetaCart
). Randomized Benchmarking [13] demonstrates an error per gate (a Paulirandomized π/2 and π pulse pair) of 8±1×10−4. Ramsey interferometry and spinlocking [14] measurements are used to elucidate the limits of qubit coherence in the system, yielding a typical freeinduction decay coherence time of T2 ∼2 ms
Alternatingtime Temporal Logic
 Journal of the ACM
, 1997
"... Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract

Cited by 615 (55 self)
 Add to MetaCart
Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general
Mixed methods research: A research paradigm whose time has come
 EDUCATIONAL RESEARCHER
, 2004
"... ..."
Symbolic Model Checking for Realtime Systems
 INFORMATION AND COMPUTATION
, 1992
"... We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given in an ..."
Abstract

Cited by 574 (50 self)
 Add to MetaCart
We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given
Pfinder: Realtime tracking of the human body
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... Pfinder is a realtime system for tracking people and interpreting their behavior. It runs at 10Hz on a standard SGI Indy computer, and has performed reliably on thousands of people in many different physical locations. The system uses a multiclass statistical model of color and shape to obtain a 2D ..."
Abstract

Cited by 1464 (48 self)
 Add to MetaCart
Pfinder is a realtime system for tracking people and interpreting their behavior. It runs at 10Hz on a standard SGI Indy computer, and has performed reliably on thousands of people in many different physical locations. The system uses a multiclass statistical model of color and shape to obtain a 2
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
Abstract

Cited by 541 (2 self)
 Add to MetaCart
that require on the order of 100 seconds to render typical data sets on a workstation. Algorithms with optimizations that exploit coherence in the data have reduced rendering times to the range of ten seconds but are still not fast enough for interactive visualization applications. In this thesis we present a
Realtime human pose recognition in parts from single depth images
 In In CVPR, 2011. 3
"... We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler p ..."
Abstract

Cited by 550 (19 self)
 Add to MetaCart
We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler perpixel classification problem. Our large and highly varied training dataset allows the classifier to estimate body parts invariant to pose, body shape, clothing, etc. Finally we generate confidencescored 3D proposals of several body joints by reprojecting the classification result and finding local modes. The system runs at 200 frames per second on consumer hardware. Our evaluation shows high accuracy on both synthetic and real test sets, and investigates the effect of several training parameters. We achieve state of the art accuracy in our comparison with related work and demonstrate improved generalization over exact wholeskeleton nearest neighbor matching. 1.
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a power
Results 1  10
of
912,423