• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 26,231
Next 10 →

Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation

by Yee Hwa Yang, Sandrine Dudoit, Percy Luu, Vivian Peng , 2002
"... There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is ..."
Abstract - Cited by 718 (9 self) - Add to MetaCart
normalization methods that are based on robust local regression and account for intensity and spatial dependence in dye biases for different types of cDNA microarray experiments. The selection of appropriate controls for normalization is discussed and a novel set of controls (microarray sample pool, MSP

LLVM: A compilation framework for lifelong program analysis & transformation

by Chris Lattner, Vikram Adve , 2004
"... ... a compiler framework designed to support transparent, lifelong program analysis and transformation for arbitrary programs, by providing high-level information to compiler transformations at compile-time, link-time, run-time, and in idle time between runs. LLVM defines a common, low-level code re ..."
Abstract - Cited by 852 (20 self) - Add to MetaCart
representation in Static Single Assignment (SSA) form, with several novel features: a simple, language-independent type-system that exposes the primitives commonly used to implement high-level language features; an instruction for typed address arithmetic; and a simple mechanism that can be used to implement

Domain names - Implementation and Specification

by P. Mockapetris - RFC-883, USC/Information Sciences Institute , 1983
"... This RFC describes the details of the domain system and protocol, and assumes that the reader is familiar with the concepts discussed in a companion RFC, "Domain Names- Concepts and Facilities " [RFC-1034]. The domain system is a mixture of functions and data types which are an official pr ..."
Abstract - Cited by 725 (9 self) - Add to MetaCart
This RFC describes the details of the domain system and protocol, and assumes that the reader is familiar with the concepts discussed in a companion RFC, "Domain Names- Concepts and Facilities " [RFC-1034]. The domain system is a mixture of functions and data types which are an official

Basic concepts and taxonomy of dependable and secure computing

by Algirdas Avizienis, Jean-claude Laprie, Brian Randell, Carl Landwehr - IEEE TDSC , 2004
"... This paper gives the main definitions relating to dependability, a generic concept including as special case such attributes as reliability, availability, safety, integrity, maintainability, etc. Security brings in concerns for confidentiality, in addition to availability and integrity. Basic defin ..."
Abstract - Cited by 779 (6 self) - Add to MetaCart
definitions are given first. They are then commented upon, and supplemented by additional definitions, which address the threats to dependability and security (faults, errors, failures), their attributes, and the means for their achievement (fault prevention, fault tolerance, fault removal, fault forecasting

Making Large-Scale Support Vector Machine Learning Practical

by Thorsten Joachims , 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract - Cited by 628 (1 self) - Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large

No Free Lunch Theorems for Optimization

by David H. Wolpert, et al. , 1997
"... A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of “no free lunch ” (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performan ..."
Abstract - Cited by 961 (10 self) - Add to MetaCart
issues addressed include time-varying optimization problems and a priori “head-to-head” minimax distinctions between optimization algorithms, distinctions that result despite the NFL theorems’ enforcing of a type of uniformity over all algorithms.

The struggle to govern the commons

by Thomas Dietz, Elinor Ostrom, Paul C. Stern - Science , 2003
"... Human institutions—ways of organizing activities—affect the resilience of the environ-ment. Locally evolved institutional arrangements governed by stable communities and buffered from outside forces have sustained resources successfully for centuries, al-though they often fail when rapid change occu ..."
Abstract - Cited by 661 (17 self) - Add to MetaCart
occurs. Ideal conditions for governance are increasingly rare. Critical problems, such as transboundary pollution, tropical deforesta-tion, and climate change, are at larger scales and involve nonlocal influences. Promising strategies for addressing these problems include dialogue among interested

Making Large-Scale SVM Learning Practical

by Thorsten Joachims , 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract - Cited by 1861 (17 self) - Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large

Sequence Logos: A New Way to Display Consensus Sequences

by homas D. Schneider, Thomas D. Schneider, R. Michael Stephens - Nucleic Acids Res , 1990
"... INTRODUCTION A logo is "a single piece of type bearing two or more usually separate elements" [1]. In this paper, we use logos to display aligned sets of sequences. Sequence logos concentrate the following information into a single graphic [2]: 1. The general consensus of the sequences. ..."
Abstract - Cited by 650 (28 self) - Add to MetaCart
INTRODUCTION A logo is "a single piece of type bearing two or more usually separate elements" [1]. In this paper, we use logos to display aligned sets of sequences. Sequence logos concentrate the following information into a single graphic [2]: 1. The general consensus of the sequences

Large margin methods for structured and interdependent output variables

by Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun - JOURNAL OF MACHINE LEARNING RESEARCH , 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract - Cited by 624 (12 self) - Add to MetaCart
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses
Next 10 →
Results 1 - 10 of 26,231
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University