Results 1  10
of
419,353
Extended results for minimumadder constant integer multipliers
 in Circuits and Systems, IEEE International Symposium on. IEEE, May 2002
, 2002
"... By introducing simplifications to multiplier graphs we extend the previous work on minimum adder multipliers to five adders and show that this is enough to express all coefficients up to 19 bits. The average savings are more than 25 % for 19 bits compared with CSD multipliers. The simplifications in ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
By introducing simplifications to multiplier graphs we extend the previous work on minimum adder multipliers to five adders and show that this is enough to express all coefficients up to 19 bits. The average savings are more than 25 % for 19 bits compared with CSD multipliers. The simplifications
Minimumadder integer multipliers using carrysave adders
 Proc. IEEE Int. Symp. Circuits Syst
"... In this paper we investigate graphbased minimumadder integer multipliers using carrysave adders. The previously proposed approaches use carrypropagation adders with two inputs and one output and are not suitable for carrysave adder implementation when we have a single input and a carrysave out ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
In this paper we investigate graphbased minimumadder integer multipliers using carrysave adders. The previously proposed approaches use carrypropagation adders with two inputs and one output and are not suitable for carrysave adder implementation when we have a single input and a carry
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
"GrabCut”  interactive foreground extraction using iterated graph cuts
 ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract

Cited by 1140 (36 self)
 Add to MetaCart
. Recently, an approach based on optimization by graphcut has been developed which successfully combines both types of information. In this paper we extend the graphcut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
as random graphs, it is increasingly recognized that the topology and evolution of real
SIS: A System for Sequential Circuit Synthesis
, 1992
"... SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential inputoutput b ..."
Abstract

Cited by 514 (41 self)
 Add to MetaCart
SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential input
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a
Results 1  10
of
419,353