Results 1  10
of
16,824
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 516 (18 self)
 Add to MetaCart
. A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model
Optimal contracts and competitive markets with costly state verification
 Journal of Economic Theory
, 1979
"... The insight of Arrow [4] and Debreu [7] that uncertainty is easily incorporated into general equilibrium models is doubleedged. It is true that one need only index commodities by the state of nature, and classical results on the existence and optimality of competitive equilibria can be made to ..."
Abstract

Cited by 879 (8 self)
 Add to MetaCart
The insight of Arrow [4] and Debreu [7] that uncertainty is easily incorporated into general equilibrium models is doubleedged. It is true that one need only index commodities by the state of nature, and classical results on the existence and optimality of competitive equilibria can be made to
The relationship between return and market value of common stocks
 Journal of Financial Economics
, 1981
"... This study examines the empirical relattonship between the return and the total market value of NYSE common stocks. It is found that smaller firms have had htgher risk adjusted returns, on average, than larger lirms. This ‘size effect ’ has been in existence for at least forty years and is evidence ..."
Abstract

Cited by 791 (0 self)
 Add to MetaCart
that the capital asset pricing model is misspecttied. The size elfect is not linear in the market value; the main effect occurs for very small tirms while there is little difference m return between average sized and large firms. It IS not known whether size per se is responsible for the effect or whether size
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken
The adaptive LASSO and its oracle properties
 Journal of the American Statistical Association
"... The lasso is a popular technique for simultaneous estimation and variable selection. Lasso variable selection has been shown to be consistent under certain conditions. In this work we derive a necessary condition for the lasso variable selection to be consistent. Consequently, there exist certain sc ..."
Abstract

Cited by 683 (10 self)
 Add to MetaCart
as well as if the true underlying model were given in advance. Similar to the lasso, the adaptive lasso is shown to be nearminimax optimal. Furthermore, the adaptive lasso can be solved by the same efficient algorithm for solving the lasso. We also discuss the extension of the adaptive lasso
Multiscalar Processors
 In Proceedings of the 22nd Annual International Symposium on Computer Architecture
, 1995
"... Multiscalar processors use a new, aggressive implementation paradigm for extracting large quantities of instruction level parallelism from ordinary high level language programs. A single program is divided into a collection of tasks by a combination of software and hardware. The tasks are distribute ..."
Abstract

Cited by 589 (30 self)
 Add to MetaCart
are dynamically routed among the many parallel processing units with the help of compilergenerated masks. Memory accesses may occur speculatively without knowledge of preceding loads or stores. Addresses are disambiguated dynamically, many in parallel, and processing waits only for true data dependence
Recovering High Dynamic Range Radiance Maps from Photographs
"... We present a method of recovering high dynamic range radiance maps from photographs taken with conventional imaging equipment. In our method, multiple photographs of the scene are taken with different amounts of exposure. Our algorithm uses these differently exposed photographs to recover the respon ..."
Abstract

Cited by 859 (15 self)
 Add to MetaCart
the response function of the imaging process, up to factor of scale, using the assumption of reciprocity. With the known response function, the algorithm can fuse the multiple photographs into a single, high dynamic range radiance map whose pixel values are proportional to the true radiance values in the scene
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 879 (14 self)
 Add to MetaCart
, where r is the residual vector y − A˜x and t is a positive scalar. We show that if A obeys a uniform uncertainty principle (with unitnormed columns) and if the true parameter vector x is sufficiently sparse (which here roughly guarantees that the model is identifiable), then with very large probability
Hidden Markov models for detecting remote protein homologies
 Bioinformatics
, 1998
"... A new hidden Markov model method (SAMT98) for nding remote homologs of protein sequences is described and evaluated. The method begins with a single target sequence and iteratively builds a hidden Markov model (hmm) from the sequence and homologs found using the hmm for database search. SAMT98 is ..."
Abstract

Cited by 462 (15 self)
 Add to MetaCart
A new hidden Markov model method (SAMT98) for nding remote homologs of protein sequences is described and evaluated. The method begins with a single target sequence and iteratively builds a hidden Markov model (hmm) from the sequence and homologs found using the hmm for database search. SAMT98
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
; state of the root nodes to 0.9, and we utilized the noisyOR model for the other nodes with a small (0.1) inhibition probability (apart from the leak term, which we inhibited with probability 0.9). This param eterization has the effect of propagating 1 's from the top layer to the bottom. Thus
Results 1  10
of
16,824