• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 23,732
Next 10 →

The Contourlet Transform: An Efficient Directional Multiresolution Image Representation

by Minh N. Do, Martin Vetterli - IEEE TRANSACTIONS ON IMAGE PROCESSING
"... The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” two-dimensional transform that can capture the intrinsic geometrical structure t ..."
Abstract - Cited by 513 (20 self) - Add to MetaCart
The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” two-dimensional transform that can capture the intrinsic geometrical structure

Shiftable Multi-scale Transforms

by Eero Simoncelli, William T. Freeman, Edward H. Adelson, David J. Heeger , 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract - Cited by 562 (36 self) - Add to MetaCart
Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal

Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging

by Michael Lustig, David Donoho, John M. Pauly - MAGNETIC RESONANCE IN MEDICINE 58:1182–1195 , 2007
"... The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finit ..."
Abstract - Cited by 538 (11 self) - Add to MetaCart
The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial

Representing Moving Images with Layers

by John Y.A. Wang, Edward H. Adelson , 1994
"... We describe a system for representing moving images with sets of overlapping layers. Each layer contains an intensity map that defines the additive values of each pixel, along with an alpha map that serves as a mask indicating the transparency. The layers are ordered in depth and they occlude each o ..."
Abstract - Cited by 542 (11 self) - Add to MetaCart
other in accord with the rules of compositing. Velocity maps define how the layers are to be warped over time. The layered representation is more flexible than standard image transforms and can capture many important properties of natural image sequences. We describe some methods for decomposing image

View Interpolation for Image Synthesis

by Shenchang Eric Chen, et al.
"... Image-space simplifications have been used to accelerate the calculation of computer graphic images since the dawn of visual simulation. Texture mapping has been used to provide a means by which images may themselves be used as display primitives. The work reported by this paper endeavors to carry t ..."
Abstract - Cited by 603 (0 self) - Add to MetaCart
Image-space simplifications have been used to accelerate the calculation of computer graphic images since the dawn of visual simulation. Texture mapping has been used to provide a means by which images may themselves be used as display primitives. The work reported by this paper endeavors to carry

A Survey of Image Registration Techniques

by Lisa Gottesfeld Brown - ACM Computing Surveys , 1992
"... Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors or from different viewpoints. Over the years, a broad range of techniques have been developed for the various types of data and problems. These ..."
Abstract - Cited by 979 (2 self) - Add to MetaCart
of distortions are distinguished. The first type are those which are the source of misregistration, i.e., they are the cause of the misalignment between the two images. Distortions which are the source of misregistration determine the transformation class which will optimally align the two images

Local grayvalue invariants for image retrieval

by Cordelia Schmid, Roger Mohr - IEEE Transactions on Pattern Analysis and Machine Intelligence , 1997
"... Abstract—This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficie ..."
Abstract - Cited by 548 (27 self) - Add to MetaCart
for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations. Index Terms—Image retrieval, image indexing, graylevel invariants, matching

Image registration methods: a survey.

by Barbara Zitová , Jan Flusser , 2003
"... Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrical ..."
Abstract - Cited by 760 (10 self) - Add to MetaCart
transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers

FAST VOLUME RENDERING USING A SHEAR-WARP FACTORIZATION OF THE VIEWING TRANSFORMATION

by Philippe G. Lacroute , 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used brute-force techniques that req ..."
Abstract - Cited by 542 (2 self) - Add to MetaCart
Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used brute-force techniques

Distinctive Image Features from Scale-Invariant Keypoints

by David G. Lowe , 2003
"... This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substa ..."
Abstract - Cited by 8955 (21 self) - Add to MetaCart
This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a
Next 10 →
Results 1 - 10 of 23,732
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University